zoukankan      html  css  js  c++  java
  • mapreduce的shuffle机制

    1.1 概述:

    mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle;(map的输出到reduce的输入)

    shuffle: 洗牌、发牌——(核心机制:数据分区,排序,缓存);

    具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序;

    1.2 主要流程:

    Shuffle缓存流程:

    Buffer in memory:内存缓冲区

    Partition:分区

    Sort:分类

    Spill to disk:切片到磁盘

    Merge on disk:合并到磁盘

    Fetch:拿来,拿取

    Copy phase:复制阶段

    Mixture of in-memory and on-disk data:内存和磁盘数据的混合

    (可以看出一个maptask可以对应多个reducetask)

    shuffleMR处理流程中的一个过程,它的每一个处理步骤是分散在各个map taskreduce task节点上完成的,整体来看,分为3个操作:

    1、分区partition

    2、Sort根据key排序

    3、Combiner进行局部value的合并

    1.3 详细流程

    1、 maptask收集我们的map()方法输出的kv对,放到内存缓冲区中

    (环形缓冲区默认100M)

    2、 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

    (经过patition分区,keycompareto方法,经过排序,combiner合并同key键值对,再经过快排/外部排序,溢出到文件)

    3、 多个溢出文件会被合并成大的溢出文件

    (经过merge文件合并,归并排序,得到maptask的最终结果文件)

    ------------------------------------------------------------------------------------------------------------

    4、 在溢出过程,及合并的过程中,都要调用partitoner进行分组和针对key进行排序

    5、 reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据

    6、 reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)(一个reducetask可以对应多个maptask,两者是多对多)

    7、 合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

    Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快

    缓冲区的大小可以通过参数调整,  参数:io.sort.mb  默认100M

    1.4 详细流程示意图

    成就人
  • 相关阅读:
    Prime Land(poj 1365)
    备用交换机(cogs 8)
    救命(洛谷 U4525)
    消息传递(cogs 1001)
    SQLite 使用主键,ROWID 及自增列
    SqlHelper 类
    一个继承的 DataGridView
    给JAVA的eclipse IDE 在线安装 SVN插件 / 给 eclipse 添加打开所在的文件夹功能
    实时更新DataGridView 合计值
    导出为文本格式
  • 原文地址:https://www.cnblogs.com/pingzizhuanshu/p/9128277.html
Copyright © 2011-2022 走看看