zoukankan      html  css  js  c++  java
  • 暑假集训 || 区间DP

    区间DP

    经典石子合并问题V1    复杂度 On3

    int a[SZ], sum[SZ], f[SZ][SZ];
    int main()
    {
        int n;
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
            sum[i] = sum[i-1] + a[i];
        }
        for(int len = 2; len <= n; len++)
        {
            for(int l = 1; l <= n-len+1; l++)
            {
                int r = l+len-1;
                int ans = INF;
                for(int k = l; k < r; k++)
                    ans = min(ans, f[l][k] + f[k+1][r] + sum[r] - sum[l-1]);
                f[l][r] = ans;
            }
        }
        printf("%d
    ", f[1][n]);
        return 0;
    }
    View Code

    V2 复杂度 On2

    环形问题可以在后面再接一段数组

    int main()
    {
        int n;
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
            sum[i] = sum[i-1] + a[i];
            a[i+n] = a[i];
        }
        for(int i = n+1; i <= 2*n; i++) sum[i] = sum[i-1] + a[i];
        for(int i = 0; i <= 2*n; i++)
            for(int j = 0; j <= 2*n; j++)
            {
                if(i == j) f[i][j] = 0, s[i][j] = i;
                else f[i][j] = INF;
            }
        for(int len = 2; len <= n; len++)
        {
            for(int l = 1; l <= 2*n-len+1; l++)
            {
                int r = l+len-1;
                for(int k = s[l][r-1]; k <= s[l+1][r]; k++)
                {
                    int ans =  f[l][k] + f[k+1][r] + sum[r] - sum[l-1];
                    if(ans < f[l][r])
                    {
                        f[l][r] = ans;
                        s[l][r] = k;
                    }
                }
            }
        }
        int res = INF;
        for(int i = 1; i <= n; i++)
            res = min(res, f[i][i+n-1]);
        printf("%d
    ", res);
        return 0;
    }
    View Code

    V3 复杂度 Onlogn

    HDU 3516

    给一堆点,在平面内选择一个位置做根,只能向右和向上连向点,问最小的连线总长度

    竟然。。是区间DP问题。。。还要四边形优化

    发现把两段合并好的树l~k-1  k~r 再合并在一起需要花费cal

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    using namespace std;
    const int SZ = 2100;
    const int INF = 1e9+10;
    int a[SZ], sum[SZ], f[SZ][SZ], s[SZ][SZ];
    struct node
    {
        int x, y;
    }pos[SZ];
    int cal(int l, int k, int r)
    {
        int ans = pos[k].x-pos[l].x + pos[k-1].y-pos[r].y;
        return ans;
    }
    int main()
    {
        int n;
        while(~scanf("%d", &n))
        {
            for(int i = 1; i <= n; i++) scanf("%d %d", &pos[i].x, &pos[i].y);
            for(int i = 0; i <= n; i++)
                for(int j = 0; j <= n; j++)
                {
                    if(i == j) f[i][j] = 0, s[i][j] = i;
                    else f[i][j] = INF;
                }
            for(int len = 2; len <= n; len++)
            {
                for(int l = 1; l <= n-len+1; l++)
                {
                    int r = l+len-1;
                    for(int k = s[l][r-1]; k <= s[l+1][r]; k++)
                    {
                        int ans =  f[l][k-1] + f[k][r] + cal(l, k, r);
                        if(ans <= f[l][r])
                        {
                            f[l][r] = ans;
                            s[l][r] = k;
                        }
                    }
                }
            }
            printf("%d
    ", f[1][n]);
        }
        return 0;
    }
    View Code

    POJ 2955 括号匹配

    为什么忘性这么大。。

    int f[SZ][SZ], s[SZ][SZ];
    int main()
    {
        char s[111];
        while(1)
        {
            scanf(" %s", s+1);
            if(s[1] == 'e') break;
            int n = strlen(s)-1;
            memset(f, 0, sizeof(f));
            for(int len = 2; len <= n; len++)
                for(int l = 1; l <= n-len+1; l++)
                {
                    int r = l+len-1;
                    if((s[l] == '(' && s[r] == ')') || (s[l] == '[' && s[r] == ']')) f[l][r] = f[l+1][r-1]+2;
                    for(int k = l; k < r; k++)
                        f[l][r] = max(f[l][r], f[l][k] + f[k+1][r]);
                }
            printf("%d
    ", f[1][n]);
        }
        return 0;
    }
    View Code

    LightOJ 1422

    题意:每一场Party都要穿相应的衣服,一次可以套着穿多件,如果某两场Party衣服一样,同一件就可以接着用,脱下过的衣服就不能再穿了 ,现在要求最少穿的衣服。

    思路: f[i][j] 表示 i-j天里需要的衣服数,考虑区间dp

    在l - r天内,若a[l] == a[r] 则第r天可以不穿,f[l][r] = f[l][r-1]

    否则第r天要穿,f[l][r] = f[l][r-1]+1

    然后枚举l - r之间的k,若a[l] == a[k] 则第k天可以不换,f[l][r] = min(f[l][r], f[l][k-1] + f[k][r])

     区间DP的边界问题真的是个玄学orz

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    using namespace std;
    const int SZ = 150;
    int a[SZ], f[SZ][SZ];
    int main()
    {
        int T, tt = 0;
        scanf("%d", &T);
        while(T--)
        {
            int n;
            scanf("%d", &n);
            for(int i = 1; i <= n; i++)
                scanf("%d", &a[i]);
            memset(f, 63, sizeof(f));
            for(int i = 1; i <= n; i++) f[i][i] = 1;
            for(int len = 1; len <= n; len++)
                for(int l = 1; l <= n; l++)
                {
                    int r = l+len;
                    if(r > n) break;
                    if(a[l] == a[r]) f[l][r] = f[l][r-1];
                    else f[l][r] = f[l][r-1] + 1;
                    for(int k = l+1; k < r-1; k++)
                        if(a[l] == a[k])
                            f[l][r] = min(f[l][r], f[l][k-1] + f[k][r]);
                }
            printf("Case %d: %d
    ", ++tt, f[1][n]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    bootstrap初识
    司徒正美居中方式
    css中的浮动(float)
    fio
    简易接口测试脚本
    字符加密
    Python 汉诺塔
    Python 找零问题
    Python 二分法
    Python 冒泡排序
  • 原文地址:https://www.cnblogs.com/pinkglightning/p/9508378.html
Copyright © 2011-2022 走看看