zoukankan      html  css  js  c++  java
  • leetcode 1049 Last Stone Weight II(最后一块石头的重量 II)

    有一堆石头,每块石头的重量都是正整数。
    
    每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
    
    如果 x == y,那么两块石头都会被完全粉碎;
    如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
    最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
    
     
    
    示例:
    
    输入:[2,7,4,1,8,1]
    输出:1
    解释:
    组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
    组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
    组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
    组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
     
    
    提示:
    
    1 <= stones.length <= 30
    1 <= stones[i] <= 1000
    

    思路:原问题可以转换为将数组分割为两个集合(根据符号为正和符号为负划分),使得这两个集合和的差最小。
    可以等价为01背包问题。那么dp[i][j]就是将前i个物品放到容量为j的背包能得到的最大值。这里背包容量为total_sum/2

    class Solution {
    public:
        int lastStoneWeightII(vector<int>& stones) {
            int sum = 0;
            for (int i = 0; i < stones.size(); ++i) {
                sum += stones[i];
            }
            int total_sum = sum; 
            sum /= 2;
            int n = stones.size();
            int dp[n+1][sum+1];
            for (int i = 0; i < n; ++i) {
                for (int j = 0; j <= sum; ++j) {
                    dp[i][j] = 0;
                }
            }
            //dp[i][j] = dp[i-1][j-stones[i]] + 1, dp[i-1][j]
            for (int j = 0; j <= sum; ++j) {
                if (j < stones[0]) dp[0][j] = 0;
                else dp[0][j] = stones[0];
            }
            
            for (int i = 1; i < n; ++i) {
                for (int j = 0; j <= sum; ++j) {
                    if (j < stones[i]) {
                        dp[i][j] = dp[i-1][j];
                    } else {
                        dp[i][j] = max(dp[i-1][j-stones[i]] + stones[i], dp[i-1][j]);
                    }
                } 
            }
            return abs(total_sum - 2*dp[n-1][sum]);
            
        }
    };
    
  • 相关阅读:
    IntelliJ IDEA 2020.1.1中java web项目的配置
    Js查漏补缺10-数组、栈、队列、回调函数等
    Js查漏补缺09-this对象
    Js查漏补缺08-闭包
    Js查漏补缺07-匿名函数应用到的框架
    Js查漏补缺06-匿名函数的用法
    Js查漏补缺05-函数
    Js查漏补缺04-Object类型
    Js查漏补缺03-循环结构
    Runnabler
  • 原文地址:https://www.cnblogs.com/pk28/p/10891763.html
Copyright © 2011-2022 走看看