题意:给你一张图,每个城市有一些人,有不超过10个城市有避难所,避难所有容量上限,问最快多久可以让所有人进入避难所?
思路:二分时间,对于每个时间跑一遍最大流,判断最大流是不是人数即可。我们还需要用二进制优化一下,对于每个二分的时间,我们需要预处理出某个城市可以到达哪些避难所,表示成状态。如果在当前时间下两个城市可以到达的避难所是一样的,我们就可以用一个状态表示,这样把点数限制在了1e3级别。
代码:
#include <bits/stdc++.h> #include <ext/pb_ds/priority_queue.hpp> #define LL long long #define pLi pair<LL ,int> #define pii pair<int, int> #define INF 0x3f3f3f3f3f3f3f3f using namespace std; using namespace __gnu_pbds; const int maxn = 200100; const int maxm = 501000; typedef __gnu_pbds::priority_queue<pLi, greater<pLi>, pairing_heap_tag> Heap; int heade[maxn], Nexte[maxm], vere[maxm], edgee[maxm], tote; LL dis[10][maxn]; pair<int, int> b[20]; int n, k; int a[maxn]; LL re[maxn * 10]; void adde(int x, int y, int z) { vere[++tote] = y; edgee[tote] = z; Nexte[tote] = heade[x]; heade[x] = tote; } Heap q; int s, t; void dijkstra(int s, int flag) { memset(dis[flag], 0x3f, sizeof(dis[flag])); Heap::point_iterator id[maxn]; dis[flag][s] = 0; id[s] = q.push(make_pair(dis[flag][s], s)); while(!q.empty()) { int x = q.top().second; q.pop(); for (int i = heade[x]; i; i = Nexte[i]) { int y = vere[i], z = edgee[i]; if(dis[flag][y] > dis[flag][x] + z) { dis[flag][y] = dis[flag][x] + z; if(id[y] != 0) q.modify(id[y], make_pair(dis[flag][y], y)); else id[y] = q.push(make_pair(dis[flag][y], y)); } } } } int head[maxn], Next[maxn * 25], ver[maxn * 25], tot; LL edge[maxn * 25]; int deep[maxn]; void add(int x, int y, LL z) { ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot; ver[++tot] = x, edge[tot] = 0, Next[tot] = head[y], head[y] = tot; } queue<int> Q; bool bfs(LL limit) { memset(deep, 0, sizeof(deep)); while(Q.size())Q.pop(); Q.push(s); deep[s] = 1; while(Q.size()) { int x = Q.front();Q.pop(); for (int i = head[x]; i; i = Next[i]) { if(edge[i] && !deep[ver[i]]) { Q.push(ver[i]); deep[ver[i]] = deep[x] + 1; if(ver[i] == t) return 1; } } } return 0; } LL dinic(int x, LL flow) { if(x == t) return flow; LL rest = flow, k; for (int i = head[x]; i && rest; i = Next[i]) { if(edge[i] && deep[ver[i]] == deep[x] + 1) { k = dinic(ver[i], min(rest, edge[i])); if(!k) deep[ver[i]] = 0; edge[i] -= k; edge[i ^ 1] += k; rest -= k; } } return flow - rest; } LL solve(int now) { tot = 1; LL maxflow = 0; // memset(head, 0, sizeof(head)); memset(head, 0, sizeof(int) * (n + 1)); for (int i = 0; i < k; i++) head[b[i].first + n] = 0; head[t] = 0; for (int i = 1; i <= n; i++) { if(a[i]) add(s, i, a[i]); } LL tmp; for (int i = 1; i <= n; i++) { tmp = 0; if(a[i] == 0) continue; for (int j = 0; j < k; j++) { if(dis[j][i] >= re[now]) continue; tmp += b[j].second; add(i, b[j].first + n, INF); } if(tmp < a[i]) { return 0; } } for (int i = 0; i < k; i++) add(b[i].first + n, t, b[i].second); LL flow; while(bfs(re[now])) { while(flow = dinic(s, INF)) maxflow += flow; } return maxflow; } int main() { LL cnt = 0; s = 0, t = 2 * n + 20; int m, x, y, z; scanf("%d%d%d", &n, &m, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); cnt += a[i]; } for (int i = 1; i <= m; i++) { scanf("%d%d%d", &x, &y, &z); adde(x, y, z); adde(y, x, z); } for (int i = 0; i < k; i++) { scanf("%d%d", &b[i].first, &b[i].second); dijkstra(b[i].first, i); } for (int i = 0; i < k; i++) for (int j = 1; j <= n; j++) { re[++tot] = dis[i][j]; } sort(re + 1, re + 1 + tot); int sz = unique(re + 1, re + 1 + tot) - (re + 1); int l = 1, r = sz + 1; re[sz + 1] = INF; while(l < r) { int mid = (l + r) >> 1; if(solve(mid) == cnt) r = mid; else l = mid + 1; } printf("%lld ", re[l - 1]); }