zoukankan      html  css  js  c++  java
  • 吴恩达《深度学习》第一课第四周编程作业(多层神经网络)

    参考链接:https://blog.csdn.net/u013733326/article/details/79767169

    搭建多层神经网络步骤:

    1、初始化

    2、前向传播

      (1)线性部分

      (2)激活部分

    3、计算代价(判断有没有学习)

    4、反向传播

      (1)线性部分

      (2)激活部分

    5、更新参数

    6、预测

    # coding=utf-8
    # This is a sample Python script.
    
    # Press ⌃R to execute it or replace it with your code.
    # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import testCases
    from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
    import lr_utils
    def init(layers_dims):
        parameters = {}
        L = len(layers_dims)
        for l in range(1, L):
            # print("l:", l)
            parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])
            parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))
            assert parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1])
            assert parameters["b" + str(l)].shape == (layers_dims[l], 1)
    
        return parameters
    
    def linear_forward(A, W, b):
        Z = np.dot(W, A) + b
        assert Z.shape == (W.shape[0], A.shape[1])
        cache = (A, W, b)
    
        return Z, cache
    
    
    def liner_activation_forward(A_pre, W, b, activation):
        if activation == "sigmoid":
            Z, linear_cache = linear_forward(A_pre, W, b)
            A, activation_cache = sigmoid(Z)
        elif activation == "relu":
            Z, linear_cache = linear_forward(A_pre, W, b)
            A, activation_cache = relu(Z)
        assert A.shape == (W.shape[0], A_pre.shape[1])
        cache = (linear_cache, activation_cache)
        return A, cache
    
    
    
    def l_model_forward(X, parameters):
        caches = []
        A = X
        L = len(parameters) // 2
        for l in range(1, L):
            A_prev = A
            A, cache = liner_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)],
                                                activation="relu")
            caches.append(cache)
    
        AL, cache = liner_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)],
                                             activation="sigmoid")
        caches.append(cache)
    
        assert AL.shape == (1, X.shape[1])
    
        return AL, caches
    
    
    def cal_cost(AL, Y):
        m = Y.shape[1]
        cost = -np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y,  np.log(1 - AL))) / m
        cost = np.squeeze(cost)
        assert cost.shape == ()
    
        return cost
    
    
    # Press the green button in the gutter to run the script.
    
    def liner_backward(dZ, cache):
        A_prev, W, b = cache
        m = A_prev.shape[1]
        dW = np.dot(dZ, A_prev.T) / m
        dB = np.sum(dZ, axis=1, keepdims=True) / m
        dA_prev = np.dot(W.T, dZ)
    
        assert dA_prev.shape == A_prev.shape
        assert dW.shape == W.shape
        assert dB.shape == b.shape
    
        return dA_prev, dW, dB
    
    
    def liner_activation_backward(dA, cache, activation):
        liner_cache, activation_cache = cache
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = liner_backward(dZ, liner_cache)
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = liner_backward(dZ, liner_cache)
        return dA_prev, dW, db
    
    def L_model_backward(AL, Y, caches):
        grads = {}
        L = len(caches)
        m = AL.shape[1]
        Y = Y.reshape(AL.shape)
        dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
        current_cache = caches[L - 1]
        grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = liner_activation_backward(dAL, current_cache,
                                                                                                     "sigmoid")
        for l in reversed((range(L - 1))):
            current_cache = caches[l]
            dA_prev_tmp, dW_tmp, db_tmp = liner_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
            grads["dA" + str(l + 1)] = dA_prev_tmp
            grads["dW" + str(l + 1)] = dW_tmp
            grads["db" + str(l + 1)] = db_tmp
    
        return grads
    
    
    def update(parameters, grads, learning_rate):
        L = len(parameters) // 2
        for l in range(L):
            parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
            parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
        return parameters
    
    
    def predict(X, y, parameters):
        m = X.shape[1]
        n = len(parameters) // 2  # 神经网络的层数
        p = np.zeros((1, m))
    
        # 根据参数前向传播
        probas, caches = l_model_forward(X, parameters)
    
        for i in range(0, probas.shape[1]):
            if probas[0, i] > 0.5:
                p[0, i] = 1
            else:
                p[0, i] = 0
    
        print("准确度为: " + str(float(np.sum((p == y)) / m)))
    
        return p
    
    def solve(X, Y, layer_dims, learning_rate, num_iterations):
        costs = []
        parameters = init(layer_dims)
    
        for i in range(0, num_iterations):
            AL, caches = l_model_forward(X, parameters)
            cost = cal_cost(AL, Y)
            grads = L_model_backward(AL, Y, caches)
            parameters = update(parameters, grads, learning_rate)
            if i % 100 == 0:
                costs.append(cost)
                    # 是否打印成本值
                print("第", i, "次迭代,成本值为:", np.squeeze(cost))
    
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
        return parameters
    
    
    if __name__ == '__main__':
        train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = lr_utils.load_dataset()
    
        train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
        test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
    
        train_x = train_x_flatten / 255
        train_y = train_set_y
        test_x = test_x_flatten / 255
        test_y = test_set_y
        # layers_dims = [12288, 20, 7, 5, 1]  # 5-layer model
        layers_dims = [12288, 20, 7, 5, 1]
        parameters = solve(train_x, train_y, layers_dims, 0.0075, num_iterations=2500)
        predictions_train = predict(train_x, train_y, parameters)  # 训练集
        predictions_test = predict(test_x, test_y, parameters)  # 测试集
    # See PyCharm help at https://www.jetbrains.com/help/pycharm/
    

      

    import numpy as np
    
    def sigmoid(Z):
        """
        Implements the sigmoid activation in numpy
    
        Arguments:
        Z -- numpy array of any shape
    
        Returns:
        A -- output of sigmoid(z), same shape as Z
        cache -- returns Z as well, useful during backpropagation
        """
    
        A = 1/(1+np.exp(-Z))
        cache = Z
    
        return A, cache
    
    def sigmoid_backward(dA, cache):
        """
        Implement the backward propagation for a single SIGMOID unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
    
        s = 1/(1+np.exp(-Z))
        dZ = dA * s * (1-s)
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    
    def relu(Z):
        """
        Implement the RELU function.
    
        Arguments:
        Z -- Output of the linear layer, of any shape
    
        Returns:
        A -- Post-activation parameter, of the same shape as Z
        cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
        """
    
        A = np.maximum(0,Z)
    
        assert(A.shape == Z.shape)
    
        cache = Z 
        return A, cache
    
    def relu_backward(dA, cache):
        """
        Implement the backward propagation for a single RELU unit.
    
        Arguments:
        dA -- post-activation gradient, of any shape
        cache -- 'Z' where we store for computing backward propagation efficiently
    
        Returns:
        dZ -- Gradient of the cost with respect to Z
        """
    
        Z = cache
        dZ = np.array(dA, copy=True) # just converting dz to a correct object.
    
        # When z <= 0, you should set dz to 0 as well. 
        dZ[Z <= 0] = 0
    
        assert (dZ.shape == Z.shape)
    
        return dZ
    

      

  • 相关阅读:
    miragejs 学习
    json-server学习
    react-redux
    webpack4知识汇总2
    webpack4知识汇总1
    vue跳转当前页面
    redux初识
    react知识补漏2
    vue ssr
    状态码
  • 原文地址:https://www.cnblogs.com/pkgunboat/p/14297037.html
Copyright © 2011-2022 走看看