zoukankan      html  css  js  c++  java
  • 吴恩达《深度学习》第二课第一周编程作业

    参考链接:https://blog.csdn.net/u013733326/article/details/79847918

    与原博文不同,我直接改动了第一课第四周的作业代码,只测试了L2正则化和随机初始化的效果。L2正则化可以明显的缓解过度拟合的情况

    代码:

    # coding=utf-8
    # This is a sample Python script.
    
    # Press ⌃R to execute it or replace it with your code.
    # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
    
    
    import numpy as np
    import matplotlib.pyplot as plt
    import sklearn
    import sklearn.datasets
    import init_utils   #第一部分,初始化
    import reg_utils    #第二部分,正则化
    import gc_utils     #第三部分,梯度校验
    from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
    np.random.seed(3)
    lambd = 0.75
    #%matplotlib inline #如果你使用的是Jupyter Notebook,请取消注释。
    
    def init(layers_dims):
        parameters = {}
        L = len(layers_dims)
        for l in range(1, L):
            # print("l:", l)
            parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1]) * 2
            parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))
            assert parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1])
            assert parameters["b" + str(l)].shape == (layers_dims[l], 1)
    
        return parameters
    
    def linear_forward(A, W, b):
        Z = np.dot(W, A) + b
        assert Z.shape == (W.shape[0], A.shape[1])
        cache = (A, W, b)
    
        return Z, cache
    
    
    def liner_activation_forward(A_pre, W, b, activation):
        if activation == "sigmoid":
            Z, linear_cache = linear_forward(A_pre, W, b)
            A, activation_cache = sigmoid(Z)
        elif activation == "relu":
            Z, linear_cache = linear_forward(A_pre, W, b)
            A, activation_cache = relu(Z)
        assert A.shape == (W.shape[0], A_pre.shape[1])
        cache = (linear_cache, activation_cache)
        return A, cache
    
    
    
    def l_model_forward(X, parameters):
        caches = []
        A = X
        L = len(parameters) // 2
        for l in range(1, L):
            A_prev = A
            A, cache = liner_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)],
                                                activation="relu")
            caches.append(cache)
    
        AL, cache = liner_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)],
                                             activation="sigmoid")
        caches.append(cache)
    
        assert AL.shape == (1, X.shape[1])
    
        return AL, caches
    
    
    def cal_cost(AL, Y, parameters):
        m = Y.shape[1]
        L = len(parameters) // 2
        cost = -np.sum(np.multiply(Y, np.log(AL)) + np.multiply(1 - Y,  np.log(1 - AL))) / m
        cost = np.squeeze(cost)
        tmp = 0
        for i in range(L):
            tmp = tmp + np.sum(np.square(parameters["W" + str(i + 1)]))
        cost = cost + tmp / (2 * m)
        assert cost.shape == ()
    
        return cost
    
    
    # Press the green button in the gutter to run the script.
    
    def liner_backward(dZ, cache):
        A_prev, W, b = cache
        m = A_prev.shape[1]
        dW = np.dot(dZ, A_prev.T) / m + ((lambd * W) / m)
        dB = np.sum(dZ, axis=1, keepdims=True) / m
        dA_prev = np.dot(W.T, dZ)
    
        assert dA_prev.shape == A_prev.shape
        assert dW.shape == W.shape
        assert dB.shape == b.shape
    
        return dA_prev, dW, dB
    
    
    def liner_activation_backward(dA, cache, activation):
        liner_cache, activation_cache = cache
        if activation == "relu":
            dZ = relu_backward(dA, activation_cache)
            dA_prev, dW, db = liner_backward(dZ, liner_cache)
        elif activation == "sigmoid":
            dZ = sigmoid_backward(dA, activation_cache)
            dA_prev, dW, db = liner_backward(dZ, liner_cache)
        return dA_prev, dW, db
    
    def L_model_backward(AL, Y, caches):
        grads = {}
        L = len(caches)
        m = AL.shape[1]
        Y = Y.reshape(AL.shape)
        dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
        current_cache = caches[L - 1]
        grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = liner_activation_backward(dAL, current_cache,
                                                                                                     "sigmoid")
        for l in reversed((range(L - 1))):
            current_cache = caches[l]
            dA_prev_tmp, dW_tmp, db_tmp = liner_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
            grads["dA" + str(l + 1)] = dA_prev_tmp
            grads["dW" + str(l + 1)] = dW_tmp
            grads["db" + str(l + 1)] = db_tmp
    
        return grads
    
    
    def update(parameters, grads, learning_rate, m):
        L = len(parameters) // 2
        for l in range(L):
            parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
            parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
        return parameters
    
    
    def predict(X,  parameters):
        m = X.shape[1]
        n = len(parameters) // 2  # 神经网络的层数
        p = np.zeros((1, m))
    
        # 根据参数前向传播
        probas, caches = l_model_forward(X, parameters)
        p = (probas > 0.5)
        # for i in range(0, probas.shape[1]):
        #     if probas[0, i] > 0.5:
        #         p[0, i] = 1
        #     else:
        #         p[0, i] = 0
        #
        # print("准确度为: " + str(float(np.sum((p == y)) / m)))
    
        return p
    
    
    def predicts(X,  y, parameters):
        m = X.shape[1]
        n = len(parameters) // 2  # 神经网络的层数
        p = np.zeros((1, m))
    
        # 根据参数前向传播
        probas, caches = l_model_forward(X, parameters)
        p = (probas > 0.5)
        print("准确度为: " + str(float(np.sum((p == y)) / m)))
        return p
    
    def solve(X, Y, layer_dims, learning_rate, num_iterations):
        costs = []
        parameters = init(layer_dims)
    
        for i in range(0, num_iterations):
            AL, caches = l_model_forward(X, parameters)
            cost = cal_cost(AL, Y, parameters)
            grads = L_model_backward(AL, Y, caches)
            parameters = update(parameters, grads, learning_rate, len(parameters) // 2)
            if i % 100 == 0:
                costs.append(cost)
                    # 是否打印成本值
                print("", i, "次迭代,成本值为:", np.squeeze(cost))
    
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
        return parameters
    
    if __name__ == '__main__':
        train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=True)
        # plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
        # plt.rcParams['image.interpolation'] = 'nearest'
        # plt.rcParams['image.cmap'] = 'gray'
        # plt.show()
        # layers_dims = [12288, 20, 7, 5, 1]  # 5-layer model
        layers_dims = [train_X.shape[0], 30, 20, 10, 5, 1]
        parameters = solve(train_X, train_Y, layers_dims, 0.01, num_iterations=25000)
        # predictions_train = predict(train_X, train_Y, parameters)  # 训练集
        # predictions_test = predict(test_X, test_Y, parameters)  # 测试集
        plt.title("Model with Zeros initialization")
        axes = plt.gca()
        axes.set_xlim([-1.5, 1.5])
        axes.set_ylim([-1.5, 1.5])
        # parameters = model(train_X, train_Y, initialization="zeros", is_polt=True)
        init_utils.plot_decision_boundary(lambda x: predict(x.T, parameters), train_X, train_Y)
        predicts(train_X, train_Y, parameters)
        predicts(test_X, test_Y, parameters)
    
    # See PyCharm help at https://www.jetbrains.com/help/pycharm/
  • 相关阅读:
    修改 cmd 控制台字体、巧用 FontLink 使中英文独立设置
    非常棒的 「Sublime Text 配色/主题」与「编程字体」
    如何优雅地制作精排 ePub —— 个人电子书制作规范及基本样式表
    Simofox 2.7
    轻松绕过极域电子教室、和教师控制 Say GoodBye
    linux常用的命令
    Java Map按键(Key)排序和按值(Value)排序
    关于递归的理解以及实例
    如何去掉list里重复的数据
    快速排序的白话理解(拷贝)
  • 原文地址:https://www.cnblogs.com/pkgunboat/p/14299952.html
Copyright © 2011-2022 走看看