zoukankan      html  css  js  c++  java
  • LOJ2524「HAOI2018」反色游戏

    LOJ2524「HAOI2018」反色游戏

    题面:LOJ

    解析

    首先考虑一个联通块怎么做。观察到若连通块为一棵树,如果黑点个数为偶数,则有且仅有一组解;反之无解。奇数的情况不难证明,因为一次反色改变黑点的个数总是偶数。现在考虑偶数,用归纳法逐层构造不难得到一组解,考虑如何证明解的唯一性。不难发现,对于当前正在构造的一颗子树,最多只能上传一个黑点(因为多余的只能通过子树内部的反色来去掉),而且这个上传的黑点的位置一定是当前子树的根节点。再次考虑归纳法,现在假设子树根节点的儿子的子树部分方案唯一,而儿子的颜色仅与子树内的黑点个数有关,现在儿子颜色确定,那么唯一的方案就是将根节点到所有黑色儿子的边反色,这样我们就证明了对于更大的子树,方案依然具有唯一性,那么这个结论得证。

    现在考虑这个联通块不为树的情况。考虑(dfs)树,那么剩下的每一条返祖边有两种选择,但是我们发现,对于每一条返祖边,将返祖边对应的路径取值异或返祖边的取值,就能消除返祖边的影响,也就是说,这个联通块和树其实是一样的,那么方案数就是(2^{m-n+1})

    现在考虑有(c)个联通块的方案数,那么就是(2^{m-n+c})

    那么删掉一个点(i)如何做呢?大致分割点和非割点讨论一下就行了。

    代码

    
    #include<cstdio>
    #include<cstring>
    #define N 100005
    
    using namespace std;
    
    const int P=1e9+7;
    
    inline int In(){
    	char c=getchar(); int x=0,ft=1;
    	for(;c<'0'||c>'9';c=getchar()) if(c=='-') ft=-1;
    	for(;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0';
    	return x*ft;
    }
    
    inline int power(int x,int k){
    	int s=1,t=x;
    	for(;k;k>>=1,t=1ll*t*t%P)
    	if(k&1) s=1ll*s*t%P;
    	return s;
    }
    
    inline int min(int a,int b){
    	return a<b?a:b;
    }
    
    int n,m,ans,e_tot,f_cnt,f_cid,c_cnt,dfs_clock;
    int h[N],opt[N],deg[N],dfn[N],low[N],id[N],uc[N],sz[N];
    char str[N]; bool iscut[N],fr[N],vis[N];
    struct E{ int to,nex; }e[N<<1];
    
    void Init(){
    	e_tot=f_cnt=c_cnt=dfs_clock=0;
    	memset(h,0,sizeof(h));
    	memset(deg,0,sizeof(deg));
    	memset(dfn,0,sizeof(dfn));
    	memset(uc,0,sizeof(uc));
    	memset(sz,0,sizeof(sz));
    	memset(iscut,0,sizeof(iscut));
    	memset(fr,0,sizeof(fr));
    	memset(vis,0,sizeof(vis));
    }
    
    
    inline void add(int u,int v){
    	e[++e_tot]=(E){v,h[u]}; h[u]=e_tot;
    }
    
    void dfs(int u,int pre){
    	dfn[u]=low[u]=++dfs_clock;
    	sz[u]=opt[u]; id[u]=c_cnt;
    	int child=0;
    	for(int i=h[u],v;i;i=e[i].nex){
    		if((v=e[i].to)==pre) continue;
    		if(!dfn[v]){
    			dfs(v,u); ++child; sz[u]+=sz[v];
    			low[u]=min(low[u],low[v]);
    			if(low[v]>=dfn[u]){
    				iscut[u]=1;
    				++uc[u]; fr[u]|=(sz[v]&1);
    			}
    		}
    		else low[u]=min(low[u],dfn[v]);
    	}
    	if(pre==-1){
    		if(child==1) iscut[u]=0;
    		else --uc[u];
    	}
    }
    
    int main(){
    	int T=In();
    	while(T--){
    		Init(); n=In(); m=In();
    		for(int i=1,u,v;i<=m;++i){
    			u=In(); v=In();
    			add(u,v); ++deg[u];
    			add(v,u); ++deg[v];
    		}
    		scanf("%s",str+1);
    		for(int i=1;i<=n;++i) opt[i]=(str[i]=='1');
    		for(int i=1;i<=n;++i) if(!dfn[i]){
    			++c_cnt; dfs(i,-1);
    			if(sz[i]&1){ ++f_cnt; f_cid=c_cnt; }
    		}
    		if(!f_cnt) ans=power(2,m-n+c_cnt); else ans=0;
    		printf("%d ",ans);
    		for(int i=1;i<=n;++i){
    			if(deg[i]==0){
    				if(opt[i]==0) printf("%d",ans);
    				else{
    					if(f_cnt>1) printf("%d",0);
    					else printf("%d",power(2,m-n+c_cnt));
    				}
    			}
    			else if(iscut[i]==0){
    				if(opt[i]==0){
    					if(ans==0) printf("%d",0);
    					else printf("%d",power(2,m-deg[i]-n+1+c_cnt));
    				}
    				else{
    					if(f_cnt>1) printf("%d",0);
    					else if(f_cnt==1){
    						if(id[i]!=f_cid) printf("%d",0);
    						else printf("%d",power(2,m-deg[i]-n+1+c_cnt));
    					}
    					else printf("%d",0);
    				}
    			}
    			else{
    				if(fr[i]==1) printf("%d",0);
    				else{
    					if(opt[i]==0){
    						if(f_cnt>1) printf("%d",0);
    						else if(f_cnt==1){
    							if(id[i]!=f_cid) printf("%d",0);
    							else printf("%d",0);
    						}
    						else printf("%d",power(2,m-deg[i]-n+1+c_cnt+uc[i]));
    					}
    					else{
    						if(f_cnt>1) printf("%d",0);
    						else if(f_cnt==1){
    							if(id[i]!=f_cid) printf("%d",0);
    							else printf("%d",power(2,m-deg[i]-n+1+c_cnt+uc[i]));
    						}
    						else printf("%d",0);
    					}
    				}
    			}
    			printf("%c",i==n?'
    ':' ');
    		}
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    Android Studio --“Cannot resolve symbol” 解决办法
    js与android webview交互
    关于post与get请求参数存在特殊字符问题
    Fragment 学习笔记(1)
    Android Studio 错误集
    UVA
    UVA
    UVALive
    考试题string——线段树。
    洛谷 1552 [APIO2012]派遣
  • 原文地址:https://www.cnblogs.com/pkh68/p/10682512.html
Copyright © 2011-2022 走看看