zoukankan      html  css  js  c++  java
  • [学习笔记] Manacher与PAM

    (1) Manacher

    挺短,背是挺好背的

    Manacher用于求回文串长度。思想大概就是:

    1、加入字符集之外的识别字符(比如#)分隔开原来相邻的字母,这样所有的回文串都变成了以某个字符为中心的(否则如果是偶数长度的回文串还要特判)。

    2、考虑借由以前的信息求出新的回文串长度。记录到现在为止最靠右的回文串中最右侧的字符下标&其对称轴的下标,不妨记这个最靠右的串为( m S)。那么考虑以当前位置作为对称轴的答案,一定至少是(min){隔着( m S)的对称轴与其对称的另一个位置ans,(|S|-i+1)} 。然后就不断扩展即可。

    3、关于复杂度证明。我们记一次帅气的操作的意义是成功让(ans_i)的初始值继承了与之对称的点的答案和边界的取(min),记以当前点为轴的最长回文子串为( m T)(T)的右端点为(q)。可以知道

    • (1)( m S)的右端点是单增的;
    • (2)如果当前旧的(maxlen<i),即未成功进行一次帅气的操作,那么显然while1次,(maxlen)增大一次;
    • (3)如果当前的串经过了一次帅气的操作,那么当(q<maxlen)时,直接跳出while;当(qgeq maxlen)时,(q)增大(maxlen)必增大。所以得出结论,进行一次帅气的操作和(maxlen)的增大次数是严格同阶的。

    So,最终复杂度就是(Theta(n))的。

    void Manacher(char *s){
    	int id, fars, i ; 
    	id = 0, fars = 0 ;
    	//id : 最靠右的回文串的中心位置 
    	//fars : 迄今为止最靠右的回文串的最右侧 
    	for (i = 1 ; i <= N ; ++ i)
    		ns[++ L] = (int)In[i], ns[++ L] = '#' ;
    	for (i = 1 ; i <= L ; ++ i){
    		if (fars <= i) base[i] = 1 ; 
    		else base[i] = min(fars - i + 1, base[id * 2 - i]) ;
    		while (ns[i + base[i]] == ns[i - base[i]]) base[i] ++ ;
     		if (i + base[i] > fars) id = i, fars = i + base[i] - 1 ;	
    	}
    }
    int main(){
    	scanf("%s", In + 1), 
    	L = -1, N = strlen(In + 1) ;
    	ns[++ L] = '$', ns[++ L] = '#' ; Manacher(In) ;
    	for (int i = 1 ; i <= 2 * N + 2 ; ++ i) ans = max(ans, base[i] - 1) ; 
    	cout << ans << endl ; return 0 ;
    }
    

    (2) PAM

    学了PAM,不知道为啥感觉比SAM简单?参考的资料会放在最后。

    其实就是一种自动机,以回文串为状态,左右各添加一个字符为转移的自动机。要点如下:

    0、一个串的回文子串至多有(O(n))个。

    1、首先每个节点需要保存这个节点中回文串的长度。

    2、显然始状态需要有两个,即奇数长度的(s)和偶数长度的(s),称作“奇根”“偶根”。那么为了方便呢,奇根的长度设置为(-1),偶根长度设置为(0)

    3、考虑要从(last)指针扩展当前状态,假设当前需要insert的字母是(c),是这个串里面的第(p)个字符,那我们需要找到一个后缀(s[j...p-1]quad s.t.quad s[j...p-1])本身回文且(s[j-1]=c),那么就可以向下扩展。

    4、考虑怎么找这个后缀,显然对于一个串(S),他的所有回文后缀都是其最长回文后缀的回文后缀。所以考虑(fail)指针,应当从当前状态连向它的最长回文后缀

    5、插入新节点时,考虑跳完(fail)后如果没有相应的转移边,就要新建一个状态然后连(fail).

    然后是代码和一点注意:

    struct PAM{
    	int trie[MAXN][Sigma] ;
    	int rt0, rt1, last, sz ;
    	int len[MAXN], fail[MAXN] ;
    }P ;
    void _init(PAM &p){
    	p.sz = -1, 
    	p.rt0 = ++ p.sz, p.rt1 = ++ p.sz ;
    	p.fail[p.rt0] = p.fail[p.rt1] = p.rt1 ;
    	p.last = p.rt0, p.len[p.rt0] = 0, p.len[p.rt1] = -1 ; 
    }
    void _insert(PAM &p, int x, int pos, char *s){
    	int u = p.last ; 
    	while (s[pos - p.len[u] - 1] != s[pos]) u = p.fail[u] ; 
    	if (!p.trie[u][x]){
    		int fa = p.fail[u] ;
    		int newn = ++ p.sz ; 
    		p.len[newn] = p.len[u] + 2 ; 
    		while (s[pos - p.len[fa] - 1] != s[pos]) fa = p.fail[fa] ; 
    		p.fail[newn] = p.trie[fa][x], p.trie[u][x] = newn, 
    	}
    	p.last = p.trie[u][x] ;
    }
    

    6、( m color{red}{WARNING}),以下两句顺序不要写反:

    p.fail[newn] = p.trie[fa][x], p.trie[u][x] = newn, 
    

    原因是当(fa=u)时就出现环了。

    (3) 闲扯

    学完才知道,( m PAM)又简单又好背功能又多……Manacher被打爆了啊喂qwq。

  • 相关阅读:
    fiddler 使用
    IO多路复用
    scrapy下载 大文件处理

    session见解
    自定义分页
    COOKIE
    ORM之老师管理
    ORM之学生管理
    ORM之班级管理
  • 原文地址:https://www.cnblogs.com/pks-t/p/12030971.html
Copyright © 2011-2022 走看看