zoukankan      html  css  js  c++  java
  • Pandas练习1

    来自 https://github.com/guipsamora/pandas_exercises

    Ex2 - Getting and Knowing your Data

    This time we are going to pull data directly from the internet.
    Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.

    Step 1. Import the necessary libraries

    import pandas as pd
    import numpy as np
    

    Step 2. Import the dataset from this address.

    Step 3. Assign it to a variable called chipo.

    url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv'
    chipo = pd.read_csv(url,sep='	')
    

    Step 4. See the first 10 entries

    # Solution 1
    
    chipo[:10]
    
    order_id quantity item_name choice_description item_price
    0 1 1 Chips and Fresh Tomato Salsa NaN $2.39
    1 1 1 Izze [Clementine] $3.39
    2 1 1 Nantucket Nectar [Apple] $3.39
    3 1 1 Chips and Tomatillo-Green Chili Salsa NaN $2.39
    4 2 2 Chicken Bowl [Tomatillo-Red Chili Salsa (Hot), [Black Beans... $16.98
    5 3 1 Chicken Bowl [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... $10.98
    6 3 1 Side of Chips NaN $1.69
    7 4 1 Steak Burrito [Tomatillo Red Chili Salsa, [Fajita Vegetables... $11.75
    8 4 1 Steak Soft Tacos [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... $9.25
    9 5 1 Steak Burrito [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25
    # Solution 2
    
    chipo.head(10)
    
    order_id quantity item_name choice_description item_price
    0 1 1 Chips and Fresh Tomato Salsa NaN $2.39
    1 1 1 Izze [Clementine] $3.39
    2 1 1 Nantucket Nectar [Apple] $3.39
    3 1 1 Chips and Tomatillo-Green Chili Salsa NaN $2.39
    4 2 2 Chicken Bowl [Tomatillo-Red Chili Salsa (Hot), [Black Beans... $16.98
    5 3 1 Chicken Bowl [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... $10.98
    6 3 1 Side of Chips NaN $1.69
    7 4 1 Steak Burrito [Tomatillo Red Chili Salsa, [Fajita Vegetables... $11.75
    8 4 1 Steak Soft Tacos [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... $9.25
    9 5 1 Steak Burrito [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25

    Step 5. What is the number of observations in the dataset?

    type(chipo)
    
    pandas.core.frame.DataFrame
    
    # Solution 1
    
    len(chipo.index)
    
    4622
    
    # Solution 2
    
    chipo.shape[0]
    
    4622
    
    # Solution 3
    
    chipo.info()
    
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4622 entries, 0 to 4621
    Data columns (total 5 columns):
    order_id              4622 non-null int64
    quantity              4622 non-null int64
    item_name             4622 non-null object
    choice_description    3376 non-null object
    item_price            4622 non-null object
    dtypes: int64(2), object(3)
    memory usage: 180.7+ KB
    

    Step 6. What is the number of columns in the dataset?

    # Solution 1
    
    len(chipo.columns)
    
    5
    
    # Solution 2
    
    chipo.shape[1]
    
    5
    

    Step 7. Print the name of all the columns.

    list(chipo.columns)
    
    ['order_id', 'quantity', 'item_name', 'choice_description', 'item_price']
    

    Step 8. How is the dataset indexed?

    chipo.index
    
    RangeIndex(start=0, stop=4622, step=1)
    

    Step 9. Which was the most-ordered item?

    c = chipo.groupby('item_name')
    c = c.sum()
    c = c.sort_values(['quantity'],ascending=False)
    c['quantity'].head(1)
    
    item_name
    Chicken Bowl    761
    Name: quantity, dtype: int64
    

    Step 10. For the most-ordered item, how many items were ordered?

    c = chipo.groupby('item_name')
    c = c.sum()
    c = c.sort_values(['quantity'],ascending=False)
    c['quantity'].head(1)
    
    item_name
    Chicken Bowl    761
    Name: quantity, dtype: int64
    

    Step 11. What was the most ordered item in the choice_description column?

    c = chipo.groupby('choice_description')
    c = c.sum()
    c = c.sort_values(['quantity'],ascending=False)
    c.head(1)
    
    order_id quantity
    choice_description
    [Diet Coke] 123455 159

    Step 12. How many items were orderd in total?

    chipo['quantity'].sum()
    
    4972
    

    Step 13. Turn the item price into a float

    Step 13.a. Check the item price type

    chipo['item_price'].dtypes
    
    dtype('O')
    

    Step 13.b. Create a lambda function and change the type of item price

    chipo['item_price'] = chipo['item_price'].apply(lambda x:x.replace('$','')).astype(np.float64);
    # dollarizer = lambda x:float(x[1:-1])
    # chipo.item_price = chipo.item_price.apply(dollarizer)
    

    Step 13.c. Check the item price type

    chipo['item_price'].dtypes
    
    dtype('float64')
    

    Step 14. How much was the revenue for the period in the dataset?

    (chipo['quantity']*chipo['item_price']).sum()
    
    39237.02
    

    Step 15. How many orders were made in the period?

    # Solution 1
    
    g = chipo.groupby(['order_id'])
    g.ngroups
    
    1834
    
    # Solution 2
    
    orders = chipo.order_id.value_counts().count()
    orders
    
    1834
    

    Step 16. What is the average revenue amount per order?

    # Solution 1
    
    chipo['revenue'] = chipo['quantity']*chipo['item_price']
    order_grouped = chipo.groupby(by=['order_id']).sum()
    order_grouped.mean()['revenue']
    
    21.394231188658654
    
    # Solution 2
    
    chipo.groupby(by=['order_id']).sum().mean()['revenue']
    
    21.394231188658654
    

    Step 17. How many different items are sold?

    chipo.item_name.value_counts().count()
    
    50
  • 相关阅读:
    redis 笔记
    经验:什么影响了数据库查询速度、什么影响了MySQL性能 (转)
    对于线程安全的一些理解
    重要的接口需要做哪些检查(转)
    数据库分库分表思路
    代码优化:Java编码技巧之高效代码50例
    java new一个对象的过程中发生了什么
    java如何防止反编译(转)
    运用加密技术保护Java源代码(转)
    redis 工具包
  • 原文地址:https://www.cnblogs.com/pkuimyy/p/11505970.html
Copyright © 2011-2022 走看看