题目描述
曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。
阳光大学的校园是一张由N个点构成的无向图,N个点之间由M条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在与这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。
询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。
输入输出格式
输入格式:
第一行:两个整数N,M
接下来M行:每行两个整数A,B,表示点A到点B之间有道路相连。
输出格式:
仅一行:如果河蟹无法封锁所有道路,则输出“Impossible”,否则输出一个整数,表示最少需要多少只河蟹。
输入输出样例
说明
【数据规模】
1<=N<=10000,1<=M<=100000,任意两点之间最多有一条道路。
染色,1010交错染色
并且统计0,1个数,取最小
因为可能存在多个连通块,需要累加
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define inf 2147483647 const ll INF = 0x3f3f3f3f3f3f3f3fll; #define ri register int template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); } template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); } template <class T> inline T min(T a, T b, T c, T d) { return min(min(a, b), min(c, d)); } template <class T> inline T max(T a, T b, T c, T d) { return max(max(a, b), max(c, d)); } #define scanf1(x) scanf("%d", &x) #define scanf2(x, y) scanf("%d%d", &x, &y) #define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z) #define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X) #define pi acos(-1) #define me(x, y) memset(x, y, sizeof(x)); #define For(i, a, b) for (int i = a; i <= b; i++) #define FFor(i, a, b) for (int i = a; i >= b; i--) #define bug printf("*********** "); #define mp make_pair #define pb push_back const int N = 1000005; // name******************************* int n,m; struct edge { int to,next; } e[N]; int tot=0; int Head[N]; int vis[N]; int sum[5]; int ans=0; int color[N]; // function****************************** void add(int u,int v) { e[++tot].to=v; e[tot].next=Head[u]; Head[u]=tot; } bool dfs(int u,int col) { if(vis[u]) { if(col==color[u])return true; else return false; } sum[col]++; color[u]=col; vis[u]=1; for(int p=Head[u]; p; p=e[p].next) { int v=e[p].to; if(!dfs(v,1-col))return false; } return true; } //*************************************** int main() { // ios::sync_with_stdio(0); // cin.tie(0); // freopen("test.txt", "r", stdin); // freopen("outout.txt","w",stdout); cin>>n>>m; For(i,1,m) { int a,b; cin>>a>>b; add(a,b); add(b,a); } For(i,1,n) { sum[0]=0; sum[1]=0; if(!vis[i]) { if(!dfs(i,0)) { cout<<"Impossible"; return 0; } } ans+=min(sum[0],sum[1]); } cout<<ans; return 0; }