zoukankan      html  css  js  c++  java
  • E

    A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.

    A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, ..., an.

    Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, ..., ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

    A non-decreasing subsequence is a sequence of indices p1, p2, ..., pk, such that p1 < p2 < ... < pk and ap1 ≤ ap2 ≤ ... ≤ apk. The length of the subsequence is k.

    Input

    The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.

    The second line contains n space-separated integers, describing the original sequence a1, a2, ..., an (1 ≤ ai ≤ 2, i = 1, 2, ..., n).

    Output

    Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

    Examples

    Input
    4
    1 2 1 2
    Output
    4
    Input
    10
    1 1 2 2 2 1 1 2 2 1
    Output
    9

    Note

    In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.

    In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.

    分成堆:

    1 2 1 2

    就交换中间的2 1 就行

    所以找前面的1 2和后面的1 2的 最长不降就行

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define inf 2147483647
    const ll INF = 0x3f3f3f3f3f3f3f3fll;
    #define ri register int
    template <class T> inline T min(T a, T b, T c)
    {
        return min(min(a, b), c);
    }
    template <class T> inline T max(T a, T b, T c)
    {
        return max(max(a, b), c);
    }
    template <class T> inline T min(T a, T b, T c, T d)
    {
        return min(min(a, b), min(c, d));
    }
    template <class T> inline T max(T a, T b, T c, T d)
    {
        return max(max(a, b), max(c, d));
    }
    #define scanf1(x) scanf("%d", &x)
    #define scanf2(x, y) scanf("%d%d", &x, &y)
    #define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
    #define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
    #define pi acos(-1)
    #define me(x, y) memset(x, y, sizeof(x));
    #define For(i, a, b) for (int i = a; i <= b; i++)
    #define FFor(i, a, b) for (int i = a; i >= b; i--)
    #define bug printf("***********
    ");
    #define mp make_pair
    #define pb push_back
    const int N = 10005;
    // name*******************************
    int f1[N];
    int f2[N];
    int pre[N];
    int nxt[N];
    int n;
    int a[N];
    int ans=0;
    // function******************************
    
    
    //***************************************
    int main()
    {
    //    ios::sync_with_stdio(0);
    //    cin.tie(0);
        // freopen("test.txt", "r", stdin);
        //  freopen("outout.txt","w",stdout);
        cin>>n;
        For(i,1,n)
        cin>>a[i];
    
        For(i,1,n)
        {
            f1[i]=1;
            For(j,1,i-1)
            if(a[i]>=a[j])
                f1[i]=max(f1[i],f1[j]+1);
            pre[i]=max(pre[i-1],f1[i]);
        }
    
        FFor(i,n,1)
        {
            f2[i]=1;
            For(j,i+1,n)
            if(a[j]>=a[i])
                f2[i]=max(f2[i],f2[j]+1);
            nxt[i]=max(nxt[i+1],f2[i]);
        }
    
        For(i,1,n)
        {
            ans=max(ans,nxt[i+1]+pre[i]);
        }
        cout<<ans;
    
        return 0;
    }
  • 相关阅读:
    [CVPR2017]Online Video Object Segmentation via Convolutional Trident Network
    [CVPR2018]Context-aware Deep Feature Compression for High-speed Visual Tracking
    光栅图形学(二):圆弧的扫描转换算法
    光栅图形学(一):直线段的扫描转换算法
    Vector使用
    STL源码剖析 — 空间配置器(allocator)
    C++ traits技术浅谈
    OpenCv 2.4.9 (二) 核心函数
    vs2017 android demo
    asp.net webapi 自托管插件式服务
  • 原文地址:https://www.cnblogs.com/planche/p/8733163.html
Copyright © 2011-2022 走看看