zoukankan      html  css  js  c++  java
  • A. Pride

    You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say xand y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

    What is the minimum number of operations you need to make all of the elements equal to 1?

    Input

    The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

    The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

    Output

    Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

    Examples
    input
    Copy
    5
    2 2 3 4 6
    output
    Copy
    5
    input
    Copy
    4
    2 4 6 8
    output
    Copy
    -1
    input
    Copy
    3
    2 6 9
    output
    Copy
    4
    Note

    In the first sample you can turn all numbers to 1 using the following 5 moves:

    • [2, 2, 3, 4, 6].
    • [2, 1, 3, 4, 6]
    • [2, 1, 3, 1, 6]
    • [2, 1, 1, 1, 6]
    • [1, 1, 1, 1, 6]
    • [1, 1, 1, 1, 1]

    We can prove that in this case it is not possible to make all numbers one using less than 5 moves.

    像dp的东西,每次处理前i项,第i项要与第i-1项不互质的话,就需要将第i-1项赋值为其gcd然后往前重复操作至互质,f[i]即为从i点开始向前的最少步数

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define inf 2147483647
    const ll INF = 0x3f3f3f3f3f3f3f3fll;
    #define ri register int
    template <class T> inline T min(T a, T b, T c)
    {
        return min(min(a, b), c);
    }
    template <class T> inline T max(T a, T b, T c)
    {
        return max(max(a, b), c);
    }
    template <class T> inline T min(T a, T b, T c, T d)
    {
        return min(min(a, b), min(c, d));
    }
    template <class T> inline T max(T a, T b, T c, T d)
    {
        return max(max(a, b), max(c, d));
    }
    #define scanf1(x) scanf("%d", &x)
    #define scanf2(x, y) scanf("%d%d", &x, &y)
    #define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
    #define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
    #define pi acos(-1)
    #define me(x, y) memset(x, y, sizeof(x));
    #define For(i, a, b) for (int i = a; i <= b; i++)
    #define FFor(i, a, b) for (int i = a; i >= b; i--)
    #define bug printf("***********
    ");
    #define mp make_pair
    #define pb push_back
    const int N=3000;
    // name*******************************
    int f[N];
    int ans=inf;
    int a[N];
    int n;
    int cnt=0;
    // function******************************
    
    
    //***************************************
    int main()
    {
    //    ios::sync_with_stdio(0);
    //    cin.tie(0);
        // freopen("test.txt", "r", stdin);
        //  freopen("outout.txt","w",stdout);
        cin>>n;
        For(i,1,n)
        {
            cin>>a[i];
            if(a[i]==1)cnt++;
        }
        if(cnt!=0)
        {
            cout<<n-cnt;
            return 0;
        }
    
        For(i,2,n)
        {
            int j=i-1;
            bool flag=false;
            int cnt=0;
            int t=a[i];
            FFor(j,i-1,1)
            {
                cnt++;
                int g=__gcd(a[j],t);
                if(g!=1)
                {
                    t=g;
                }
                else
                {
                    flag=true;
                    break;
                }
            }
            if(flag)
                ans=min(ans,cnt);
        }
        if(ans!=inf)
        {
            ans+=n-1;
            cout<<ans;
        }
        else
            cout<<-1;
    
        return 0;
    }
  • 相关阅读:
    jquery.validate.unobtrusive的使用
    企业库判断数据库连接类型
    win10下安装LoadRunner12汉化包
    win10安装LoadRunner时,安装.net framwork组件报0x800F081F错误 解决办法
    wrk性能测试(详解)
    wrk压测报错 LF character expected at 1:111
    Linux scp命令详解(服务器之间复制文件或目录)
    Linux cat命令详解(连接文件并打印到标准输出设备上)
    性能测试流程
    ‘mysql’不是内部或外部命令,也不是可运行的程序--解决方法
  • 原文地址:https://www.cnblogs.com/planche/p/8778454.html
Copyright © 2011-2022 走看看