zoukankan      html  css  js  c++  java
  • poj--3169--Layout(简单差分约束)

    Layout
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9098   Accepted: 4347

    Description

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

    Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

    Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

    Input

    Line 1: Three space-separated integers: N, ML, and MD. 

    Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

    Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

    Output

    Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

    Sample Input

    4 2 1
    1 3 10
    2 4 20
    2 3 3

    Sample Output

    27

    Hint

    Explanation of the sample: 

    There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

    The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

    Source

    [Submit]   [Go Back]   [Status]   [Discuss]

    Home Page   Go Back  To top


    #include<cstdio> 
    #include<cstring>
    #include<queue>
    #include<stack>
    #include<algorithm>
    using namespace std;
    #define MAXN 1010
    #define MAXM 1000000+10
    #define INF 10000000+10
    int head[MAXN],dist[MAXN],used[MAXN],vis[MAXN];
    int n,x,y,cnt;
    struct node
    {
    	int u,v,val;
    	int next;
    }edge[MAXM];
    void init()
    {
    	memset(head,-1,sizeof(head));
    	cnt=0;
    }
    void add(int u,int v,int val)
    {
    	node E={u,v,val,head[u]};
    	edge[cnt]=E;
    	head[u]=cnt++;
    }
    void getmap()
    {
    	for(int i=1;i<n;i++)
    	add(i+1,i,0);
    	int a,b,c;
    	while(x--)
    	{
    		scanf("%d%d%d",&a,&b,&c);
    		add(a,b,c);
    	}
    	while(y--)
    	{
    		scanf("%d%d%d",&a,&b,&c);
    		add(b,a,-c);
    	}
    }
    void SPFA()
    {
    	queue<int> Q;
    	for(int i = 1; i <= n; i++)
    	{
    		dist[i] = i==1 ? 0 : INF;
    		vis[i] = false;
    		used[i] = 0;
    	}
    //	memset(vis,0,sizeof(vis));
    //	memset(dist,INF,sizeof(dist));
    //	memset(used,0,sizeof(used));
    //	dist[1]=0;
    	used[1] = 1;
    	vis[1] = 1;
    	Q.push(1);
    	while(!Q.empty())
    	{
    		int u = Q.front();
    		Q.pop();
    		vis[u] = 0;
    		for(int i = head[u]; i != -1; i = edge[i].next)
    		{
    			node E = edge[i];
    			if(dist[E.v] > dist[u] + E.val)
    			{
    				dist[E.v] = dist[u] + E.val;
    				if(!vis[E.v])
    				{
    					vis[E.v] = 1;
    					used[E.v]++;
    					if(used[E.v] > n) 
    					{
    						printf("-1
    ");
    						return ;
    					} 
    					Q.push(E.v);
    				} 
    			}
    		}
    	}
    	if(dist[n] == INF) 
    	printf("-2
    ");
    	else
    	printf("%d
    ", dist[n]);
    } 
    int main()
    {
    	while(scanf("%d%d%d",&n,&x,&y)!=EOF)
    	{
    		init();
    		getmap();
    		SPFA();
    	}
    	return 0;
    }




  • 相关阅读:
    Spring 事务不回滚
    Druid详细配置信息
    Servlet和JSP规范及版本对应关系
    CDN(内容分发网络)技术原理
    开发者需要了解的WebKit
    浏览器的渲染原理简介
    在浏览器中输入Google.com并且按下回车之后发生了什么?
    为什么说DOM操作很慢
    亿级Web系统搭建——单机到分布式集群
    linux下用rinetd做端口转发
  • 原文地址:https://www.cnblogs.com/playboy307/p/5273534.html
Copyright © 2011-2022 走看看