Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1996 Accepted Submission(s): 786
Total Submission(s): 1996 Accepted Submission(s): 786
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
/* 题意:给出一个整数n,求解该整数n有多少种由2的幂次之和组成的方案. 解题思路: 1.可以将n用二进制表示. n=1,只有1种表示方法。 n=2,10(2),二进制表示下,可以分拆成{1,1},{10}有两种表示方法 n=3, 11(2),可以分拆成{1,1,1},{10,1}. n=4, 100(2),{1,1,1,1},{10,1,1},{10,10},{100}. 总结:如果所求的n为奇数,那么所求的分解结果中必含有1, 因此,直接将n-1的分拆结果中添加一个1即可 为s[n-1] 如果所求的n为偶数,那么n的分解结果分两种情况 1.含有1 这种情况可以直接在n-1的分解结果中添加一个1即可 s[n-1] 2.不含有1 那么,分解因子的都是偶数,将每个分解的因子都除以2, 刚好是n/2的分解结果,并且可以与之一一对应,这种情况有 s[n/2] */ /*#include<stdio.h> #include<string.h> int a[1000010]; int main() { a[1]=1; a[2]=2; int n,i=3; while(i<=1000000) { a[i++]=a[i-1]; a[i++]=(a[i-1]+a[i>>1])%1000000000; } while(scanf("%d",&n)!=EOF) { printf("%d ",a[n]); } return 0; }*/ #include<stdio.h> #include<string.h> int f[1000010]; int main() { int n; while(scanf("%d",&n)!=EOF) { memset(f,0,sizeof(f)); f[1]=1; for(int i=2;i<=n;i++) { if(i&1) f[i]=f[i-1]; else f[i]=(f[i-1]+f[i>>1])%1000000000; } printf("%d ",f[n]); } return 0; }