Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 181284 Accepted Submission(s): 42384
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
/*找出一个数组中和最大的一串数字,求和并输出起点和终点,简单的dp,一个数字一个数字开始加 找到小于0的话就重新开始找,否则就继续加,开始时想用01背包做,但是发现全部的数字加起来可能是 负数,这样的话01背包就没办法列出所有的情况,并且起点和终点也不好记录*/ #include<stdio.h> #include<string.h> int a[100010]; int main() { int max,b,e,t,n,sum; int Case=1; scanf("%d",&t); while(t--) { scanf("%d",&n); memset(a,0,sizeof(a)); for(int i=1;i<=n;i++) scanf("%d",&a[i]); int k=1; int max=0,flog=0; sum=b=e=0; for(int j=1;j<=n;j++) { if(a[j]>0) flog=1;//如果数组中没有一个数大于0,那么就找出最大的负数 sum+=a[j]; if(sum<0) { sum=0; k=j+1;//如果sum<0,就让sum=0重新开始加 } if(sum>max) { max=sum;//找到比max大的和就开始替换 b=k; e=j; } } if(flog==0) { max=a[1]; b=1,e=1; for(int j=2;j<=n;j++) if(max<a[j]) { max=a[j]; b=j;e=j; } } printf("Case %d: ",Case++); printf("%d %d %d ",max,b,e); if(t>=1) printf(" "); } return 0; }