Fibonacci Tree
Time Limit : 4000/2000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 13 Accepted Submission(s) : 6
Problem Description
Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
Input
The first line of the input contains an integer T, the number of test cases. For each test case, the first line contains two integers N(1 <= N <= 10[sup]5[/sup]) and M(0 <= M <= 10[sup]5[/sup]). Then M lines follow, each contains
three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
Output
For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
Sample Input
2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
Sample Output
Case #1: Yes Case #2: No
Source
最小生成树和最大生成树中白边的数量之间是否夹了一个菲波数,先打表列出能用到的菲波数,然后最大生成树与最小生成树的建立。代码:
#include<stdio.h> #include<string.h> #include<algorithm> #define MAXN 1000010 using namespace std; int sum,ans; int pri[MAXN]; int fibonacci[26]={0,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025};//打表 struct s { int a; int b; int cost; }dis[MAXN]; bool cmp(s A,s B) { return A.cost<B.cost; } int find(int x) { int r=x; while(r!=pri[r]) r=pri[r]; int i=x,j; while(i!=r) { j=pri[i]; pri[i]=r; i=j; } return r; } void connect(int xx,int yy,int num) { int nx=find(xx); int ny=find(yy); if(nx!=ny) { pri[nx]=ny; ans++; if(num==1) sum++; } } int main() { int i,j,m,s,n; int t,q,num,k,low,high; int cas=0; scanf("%d",&t); while(t--) { sum=0; scanf("%d%d",&n,&m); for(i=1;i<=n;i++) pri[i]=i; for(i=0;i<m;i++) { scanf("%d%d%d",&dis[i].a,&dis[i].b,&dis[i].cost); } sort(dis,dis+m,cmp); ans=0; for(i=0;i<m;i++) { connect(dis[i].a,dis[i].b,dis[i].cost); } if(ans!=n-1) { printf("Case #%d: No ",++cas); continue; } low=sum; sum=0; for(i=1;i<=n;i++) pri[i]=i; for(i=m-1;i>=0;i--) { connect(dis[i].a,dis[i].b,dis[i].cost); } high=sum; int bz=0; for(i=1;i<=24;i++) { if(fibonacci[i]>=low&&fibonacci[i]<=high) bz=1; } if(bz) printf("Case #%d: Yes ",++cas); else printf("Case #%d: No ",++cas); } return 0; }