题意:将含有连续的"49"的数称为不吉利数,每给出一个n,[1, n]中不吉利数的个数。n <= 2^63-1
解法:数位DP入门题,类似于HDU 2089,具体解法看那道题的题解吧,HDU 2089 不要62。
tag:数位DP, 基础题。
1 /* 2 * Author: Plumrain 3 * Created Time: 2013-12-14 15:05 4 * File Name: DP-HDU-3555.cpp 5 */ 6 #include <iostream> 7 #include <cstdio> 8 #include <cstring> 9 10 using namespace std; 11 12 #define CLR(x) memset(x, 0, sizeof(x)) 13 typedef long long int64; 14 int64 d[25][3], dit[20]; 15 16 int64 gao(int64 x) 17 { 18 int64 len = 0, ret = 0; 19 bool xxx = 0; 20 CLR (dit); 21 while (x){ 22 dit[len++] = x % 10; 23 x /= 10; 24 if (len > 1 && dit[len-1] == 4 && dit[len-2] == 9) 25 xxx = 1; 26 } 27 if (xxx) ++ ret; 28 dit[len] = 0; 29 30 bool flag = 0; 31 for (int i = len-1; i >= 0; -- i){ 32 ret += dit[i] * d[i][2]; 33 if (flag) ret += dit[i] * (d[i][0] + d[i][1]); 34 else if (dit[i] > 4) ret += d[i][1]; 35 36 if (dit[i+1] == 4 && dit[i] == 9) flag = 1; 37 } 38 return ret; 39 } 40 41 int main() 42 { 43 CLR (d); 44 d[0][0] = 1; 45 for (int i = 1; i < 20; ++ i){ 46 d[i][0] = 9 * (d[i-1][0] + d[i-1][1]) - d[i-1][1]; 47 d[i][1] = d[i-1][0] + d[i-1][1]; 48 d[i][2] = 10 * d[i-1][2] + d[i-1][1]; 49 } 50 51 int T; 52 int64 n; 53 scanf ("%d", &T); 54 while (T--){ 55 cin >> n; 56 cout << gao(n) << endl; 57 } 58 return 0; 59 }