本文的起源来自最近一个让我非常不爽的事。
我最近在改一个开源RNN工具包currennt(http://sourceforge.net/projects/currennt/),想用它实现RNNLM功能。
currennt使用了大量的面向对象的编程技巧,可以使用GPU,向量运算使用了thrust库(https://code.google.com/p/thrust/)。
RNNLM(http://rnnlm.org/)也有相应开源实现,非常算法风格的代码,向量运算就是自己使用数组实现的。
结果……大出我的语料,在不使用GPU的情况下,currennt慢成狗!我不断的修改,直到最后几乎完全在currennt里重写了一个RNNLM……速度才终于一致了。这花费了我大量时间,最关键的是我根本没打算花这些时间,算是计划外开销。
所以这里干脆对常用的几种向量运算做个评测,下回遇到至少心里有数。
参与评测的向量实现包括:
- C++ array
- C++ STL vector
- C++ thrust(CPU)
- C++ thrust(GPU)
- python
- python numpy
评测指标包括:
- 创建、填充向量
- 向量点乘,相乘
- 矩阵相乘
测试环境:
Intel Xeon CPU E5649@2.53GHz x24
VS2010
python 2.7.6 (32bit)
thrust v1.5
numpy 1.8.1
C++ array
创建全0向量:0.000s,几乎不占用时间
int vector_size=100000000; float* vector=(float*)calloc(vector_size,sizeof(float));
创建+填充向量:0.140s
int vector_size=100000000; float* vector=(float*)calloc(vector_size,sizeof(float)); for (int i=0;i<vector_size;++i){ vector[i]=0.01; }
向量点乘:0.390s
float sum=0; for(int i=0;i<vector_size;++i){ sum+=vector1[i]*vector2[i]; }
向量相乘:0.265s
float sum=0; for(int i=0;i<vector_size;++i){ vector3[i]=vector1[i]*vector2[i]; }
矩阵乘向量:0.344s
int matrix1_colnum=50000; int matrix1_rownum=2000; int matrix1_size=matrix1_colnum*matrix1_rownum; float* vector1=(float*)calloc(matrix1_size,sizeof(float)); for (int i=0;i<matrix1_size;++i){ vector1[i]=0.01; } float* vector2=(float*)calloc(matrix1_colnum,sizeof(float)); for (int i=0;i<matrix1_colnum;++i){ vector2[i]=0.02; } start_t=clock(); float* vector3=(float*)calloc(matrix1_rownum,sizeof(float)); for(int row=0;row<matrix1_rownum;++row){ for(int col=0;col<matrix1_colnum;++col){ vector3[row]+=vector1[row*matrix1_colnum+col]*vector2[col]; } } end_t=clock();
矩阵乘矩阵:0.749
(耗费时间与matrix1_rownum*matrix1_colnum*matrix2_colnum成正比)
int matrix1_rownum=200; int matrix1_colnum=5000; int matrix1_size=matrix1_colnum*matrix1_rownum; float* vector1=(float*)calloc(matrix1_size,sizeof(float)); for (int i=0;i<matrix1_size;++i){ vector1[i]=0.01; } int matrix2_rownum=5000; int matrix2_colnum=200; int matrix2_size=matrix2_rownum*matrix2_colnum; float* vector2=(float*)calloc(matrix2_size,sizeof(float)); for (int i=0;i<matrix2_size;++i){ vector2[i]=0.02; } int matrix3_size=matrix1_rownum*matrix2_colnum; float* vector3=(float*)calloc(matrix3_size,sizeof(float)); start_t=clock(); for(int row1=0;row1<matrix1_rownum;++row1){ for(int col2=0;col2<matrix2_colnum;++col2){ for(int col1=0;col1<matrix1_colnum;++col1){ vector3[row1*matrix2_colnum+col2]+=vector1[row1*matrix1_colnum+col1]*vector2[col1*matrix2_colnum+col2]; } } } end_t=clock();
C++ STL vector
创建全0向量:0.140s
int vect_size=100000000;
vector<float> vector(vect_size);
创建+填充向量:0.140s
int vect_size=100000000; vector<float> vector(vect_size,0.01);
向量点乘:0.375s
int vect_size=100000000; vector<float> vector1(vect_size,0.01); vector<float> vector2(vect_size,0.02); start_t=clock(); float sum=0; for(int i=0;i<vect_size;++i){ sum+=vector1[i]*vector2[i]; } end_t=clock();
向量相乘:0.250s
int vect_size=100000000; vector<float> vector1(vect_size,0.01); vector<float> vector2(vect_size,0.02); vector<float> vector3(vect_size); start_t=clock(); for(int i=0;i<vect_size;++i){ vector3[i]=vector1[i]*vector2[i]; } end_t=clock();
矩阵乘向量:0.390s
int matrix1_colnum=50000; int matrix1_rownum=2000; int matrix1_size=matrix1_colnum*matrix1_rownum; vector<float> vector1(matrix1_size,0.01); vector<float> vector2(matrix1_colnum,0.02); vector<float> vector3(matrix1_rownum); start_t=clock(); for(int row=0;row<matrix1_rownum;++row){ for(int col=0;col<matrix1_colnum;++col){ vector3[row]+=vector1[row*matrix1_colnum+col]*vector2[col]; } } end_t=clock();
矩阵乘法:0.827s
int matrix1_rownum=200; int matrix1_colnum=5000; int matrix1_size=matrix1_colnum*matrix1_rownum; vector<float> vector1(matrix1_size,0.01); int matrix2_rownum=5000; int matrix2_colnum=200; int matrix2_size=matrix2_rownum*matrix2_colnum; vector<float> vector2(matrix2_size,0.02); int matrix3_size=matrix1_rownum*matrix2_colnum; vector<float> vector3(matrix3_size); start_t=clock(); for(int row1=0;row1<matrix1_rownum;++row1){ for(int col2=0;col2<matrix2_colnum;++col2){ for(int col1=0;col1<matrix1_colnum;++col1){ vector3[row1*matrix2_colnum+col2]+=vector1[row1*matrix1_colnum+col1]*vector2[col1*matrix2_colnum+col2]; } } } end_t=clock();
C++ thrust(CPU)
创建全0向量:0.140s
int vect_size=100000000; thrust::host_vector<float> vector1(vect_size);
创建+填充向量:0.140s
int vect_size=100000000; thrust::host_vector<float> vector1(vect_size,0.01);
填充向量:0.078s
thrust::fill(vector1.begin(),vector1.end(),0.01);
向量点乘:0.359s
int vect_size=100000000; thrust::host_vector<float> vector1(vect_size,(float)0.1); thrust::host_vector<float> vector2(vect_size,(float)0.2); thrust::host_vector<float> vector3(vect_size,(float)0.2); start_t=clock(); thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies<float>()); float sum=thrust::reduce(vector3.begin(),vector3.end(),(float)0,thrust::multiplies<float>()); end_t=clock();
向量相乘:0.187s
int vect_size=100000000; thrust::host_vector<float> vector1(vect_size,(float)0.1); thrust::host_vector<float> vector2(vect_size,(float)0.2); thrust::host_vector<float> vector3(vect_size); start_t=clock(); thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies<float>()); end_t=clock();
矩阵乘向量:0.110s
struct matrixXvect_func { thrust::host_vector<float>* matrix; thrust::host_vector<float>* vector; int matrix_rownum; int matrix_colnum; __host__ __device__ float operator()(const int& idx) const{ float t=0; for(int col=0;col<matrix_colnum;++col){ t+=(*matrix)[idx*matrix_colnum+col]* (*vector)[col]; } return t; } };
int matrix1_rownum=2000;
int matrix1_colnum=50000; int matrix1_size=matrix1_colnum*matrix1_rownum; thrust::host_vector<float> vector1(matrix1_size,(float)0.1); thrust::host_vector<float> vector2(matrix1_colnum,(float)0.2); thrust::host_vector<float> vector3(matrix1_rownum); start_t=clock(); matrixXvect_func fn; fn.matrix=&vector1; fn.vector=&vector2; fn.matrix_rownum=matrix1_rownum; fn.matrix_colnum=matrix1_colnum; thrust::transform( thrust::counting_iterator<int>(0), thrust::counting_iterator<int>(0) + matrix1_rownum, vector3.begin(), fn ); end_t=clock();
矩阵乘矩阵:0.655s
struct matrixXmatrix_func { thrust::host_vector<float>* matrix1; thrust::host_vector<float>* matrix2; int matrix1_rownum; int matrix1_colnum; int matrix2_rownum; int matrix2_colnum; __host__ __device__ float operator()(const int& idx) const{ int rownum=idx/matrix2_colnum; int colnum=idx%matrix2_colnum; float t=0; for(int col=0;col<matrix1_colnum;++col){ t+=(*matrix1)[rownum*matrix1_colnum+col]* (*matrix2)[col*matrix2_colnum+colnum]; } return t; } }; int matrix1_rownum=200; int matrix1_colnum=5000; int matrix1_size=matrix1_colnum*matrix1_rownum; thrust::host_vector<float> vector1(matrix1_size,(float)0.1); int matrix2_rownum=5000; int matrix2_colnum=200; int matrix2_size=matrix2_rownum*matrix2_colnum; thrust::host_vector<float> vector2(matrix2_size,(float)0.2); int matrix3_size=matrix1_rownum*matrix2_colnum; thrust::host_vector<float> vector3(matrix3_size); start_t=clock(); matrixXmatrix_func fn; fn.matrix1=&vector1; fn.matrix2=&vector2; fn.matrix1_rownum=matrix1_rownum; fn.matrix1_colnum=matrix1_colnum; fn.matrix2_rownum=matrix2_rownum; fn.matrix2_colnum=matrix2_colnum; thrust::transform( thrust::counting_iterator<int>(0), thrust::counting_iterator<int>(0) + matrix3_size, vector3.begin(), fn ); end_t=clock();
C++ thrust(GPU)
创建全0向量:0.140s
int vect_size=1000000; thrust::device_vector<float> vector1(vect_size);
创建+填充向量:0.140s
int vect_size=1000000; thrust::device_vector<float> vector1(vect_size,0.1);
CPU向量赋值:0.141s
int vect_size=1000000; thrust::host_vector<float> vector1(vect_size,0.1); start_t=clock(); thrust::device_vector<float> vector2=vector1; end_t=clock();
填充向量:0.000s
int vect_size=1000000; thrust::device_vector<float> vector(vect_size); start_t=clock(); thrust::fill(vector.begin(),vector.end(),(float)0.1); end_t=clock();
向量点乘:0.016s
int vect_size=100000000; thrust::device_vector<float> vector1(vect_size,(float)0.1); thrust::device_vector<float> vector2(vect_size,(float)0.2); thrust::device_vector<float> vector3(vect_size,(float)0.2); start_t=clock(); thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies<float>()); float sum=thrust::reduce(vector3.begin(),vector3.end(),(float)0,thrust::multiplies<float>()); end_t=clock();
向量相乘:0.000s
int vect_size=100000000; thrust::device_vector<float> vector1(vect_size,(float)0.1); thrust::device_vector<float> vector2(vect_size,(float)0.2); thrust::device_vector<float> vector3(vect_size); start_t=clock(); thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies<float>()); end_t=clock();
矩阵乘向量(实现1):0.530s
int matrix1_rownum=2000; int matrix1_colnum=50000; int matrix1_size=matrix1_colnum*matrix1_rownum; thrust::device_vector<float> vector1(matrix1_size,(float)0.1); thrust::device_vector<float> vector2(matrix1_colnum,(float)0.2); thrust::device_vector<float> tmp(matrix1_colnum); thrust::device_vector<float> vector3(matrix1_rownum); start_t=clock(); for(int row=0;row<matrix1_rownum;++row){ thrust::transform(vector1.begin()+row*matrix1_colnum,vector1.begin()+(row+1)*matrix1_colnum,vector2.begin(),tmp.begin(),thrust::multiplies<float>()); vector3[row]=thrust::reduce(tmp.begin(),tmp.end(),(float)0,thrust::multiplies<float>()); } end_t=clock();
矩阵乘向量(实现2)CUBLAS,待试
矩阵乘矩阵CUBLAS,待试
Python
直接使用python的list实现上述功能实在太慢……而且由于无法指定float类型,其默认使用16位double类型来表示小数,使用10^8会超出list索引上限……故只使用10^7实验,速度差距可以自行换算。
大致估算python的向量运算比c++慢50倍,矩阵运算慢1000。
初始化向量并赋值:1.51s
vector_size=10000000 vector=[] for i in range(vector_size): vector.append(0.1)
向量点乘:1.75s
vector_size=10000000
vector1=[] for i in range(vector_size): vector1.append(0.1) vector2=[] for i in range(vector_size): vector2.append(0.1) start_t=time.time() sum=0 for i in range(vector_size): sum+=vector1[i]*vector2[i] end_t=time.time()
向量相乘:2.39
vector_size=10000000 vector1=[] for i in range(vector_size): vector1.append(0.1) vector2=[] for i in range(vector_size): vector2.append(0.1) vector3=[] for i in range(vector_size): vector3.append(0.1) start_t=time.time() for i in range(vector_size): vector3[i]=vector1[i]*vector2[i] end_t=time.time()
矩阵乘向量:3.06s
matrix1_rownum=2000 matrix1_colnum=5000 matrix1_size=matrix1_rownum*matrix1_colnum vector1=[] for i in range(matrix1_size): vector1.append(0.1) vector2=[] for i in range(matrix1_colnum): vector2.append(0.1) vector3=[] for i in range(matrix1_rownum): vector3.append(0.1) start_t=time.time() for row in range(matrix1_rownum): for col in range(matrix1_colnum): vector3[row]=vector1[row*matrix1_colnum+col]*vector2[col] end_t=time.time()
矩阵相乘:11.37s
matrix1_rownum=200 matrix1_colnum=500 matrix1_size=matrix1_rownum*matrix1_colnum vector1=[] for i in range(matrix1_size): vector1.append(0.1) matrix2_rownum=500 matrix2_colnum=200 matrix2_size=matrix2_rownum*matrix2_colnum vector2=[] for i in range(matrix2_size): vector2.append(0.1) matrix3_size=matrix1_rownum*matrix2_colnum vector3=[] for i in range(matrix3_size): vector3.append(0.1) start_t=time.time() for row in range(matrix1_rownum): for col in range(matrix2_colnum): for i in range(matrix1_colnum): vector3[row*matrix2_colnum+col]+=vector1[row*matrix1_colnum+i]*vector2[i*matrix2_colnum+col] end_t=time.time()
当然实际进行向量运算没人会拿python的list数据结构进行运算,这里只是好奇定量测一下list到底有多慢……
Python numpy
创建全0向量:0.0s
vector_size=100000000 vector=numpy.zeros(vector_size)
创建+填充向量:0.25s
vector_size=100000000 vector=numpy.zeros(vector_size) vector.fill(0.01)
向量点乘:0.125s(由于python是32位……内存原因,数据规模减半)
vector_size=50000000 vector1=numpy.zeros(vector_size) vector1.fill(0.01) vector2=numpy.zeros(vector_size) vector2.fill(0.02) start_t=time.time() sum=numpy.inner(vector1,vector2) end_t=time.time()
向量相乘:0.234s
vector_size=50000000 vector1=numpy.zeros(vector_size) vector1.fill(0.01) vector2=numpy.zeros(vector_size) vector2.fill(0.02) start_t=time.time() vector3=numpy.multiply(vector1,vector2) end_t=time.time()
矩阵乘向量:0.094s
matrix1_rownum=2000 matrix1_colnum=50000 matrix1_size=matrix1_rownum*matrix1_colnum vector1=numpy.zeros(matrix1_size) vector1.fill(0.01) vector2=numpy.zeros(matrix1_colnum) vector2.fill(0.02) start_t=time.time() vector1=vector1.reshape(matrix1_rownum,matrix1_colnum) vector2=vector2.reshape(matrix1_colnum,1) vector3=numpy.dot(vector1,vector2) end_t=time.time()
矩阵乘矩阵:23.16s(numpy.dot出乎意料的慢,使用numpy.matrix类时间为11.73s,依旧很慢而且占用更大内存,在创建matrix对象时也要0.4s)
matrix1_rownum=2000 matrix1_colnum=50000 matrix1_size=matrix1_rownum*matrix1_colnum vector1=numpy.zeros(matrix1_size) vector1.fill(0.01) matrix2_rownum=50000 matrix2_colnum=1000 matrix2_size=matrix2_rownum*matrix2_colnum vector2=numpy.zeros(matrix2_size) vector2.fill(0.02) start_t=time.time() vector1=vector1.reshape(matrix1_rownum,matrix1_colnum) vector2=vector2.reshape(matrix2_rownum,matrix2_colnum) vector3=numpy.dot(vector1,vector2) end_t=time.time()