zoukankan      html  css  js  c++  java
  • 欧几里德算法及其扩展(推导&&模板)

    有关欧几里德算法整理:


    1.一些相关概念:

    <1>.整除性与约数:

    ①一个整数可以被另外一个整数整除即为d|a(表示d整除a,通俗的说是a可以被d整除),其含义也可以说成,存在某个整数k,使得a=kd.
    ②如果d|a且d>=0,则称d是a的约数。
    ③如果d|a,则-d|a,即a的任何约数的负数同样可以整除a.但一般规定,约数为非负数。非零整数a的约数应至少为1,且d<=|a|.
    ④因子:整数a的非平凡约数(除了1和它本身的约数)称为a的因子。

    <2>.素数和合数.

    <3>.除法定理:
    对于任何整数a和任何正整数n,存在唯一整数q和r,满足0<=r<n,且a=qn+r.
            等模:               
    根据整数模n的余数,我们可以将所有的整数划分成n个等分类。包含整数a的模n等价类为:[a]n={a+kn}
       <4>.公约数与最大公约数:
    ①概念:
    公约数:如果d是a的约数并且d也是b的约数,则d是a与b的公约数;
    两个不同时为0的整数a与b的公约数种最大的称为其最大公约数,记作gcd(a,b);
    ②基本性质:
    公约数的重要性质:若d是a,b的公约数,则d|(a+b)且d|(a-b);且对任意整数x,y,有d|(ax+by);
    gcd函数的基本性质略简单不提;

    若任意整数a,b不都为0,则gcd(a,b)为a与b的线性组合集{ax+by:x,y属于Z}的最小正整数。
     1 这里略带证明一下:
     2 
     3       设s是a与b的线性组合集合中的最小正元素,并且对某个x,y属于Z,有s=ax+by,设q=a/s.
     4       a mod s=a-qs;
     5       由于0<=a mod s<s
     6       =>a mod s=0
     7       =>s|a;
     8       同理,s|b
     9       =>s是a与b的公约数,满足gcd(a,b)>=s;
    10       又gcd(a,b)|s,s>0
    11 =>gcd(a,b)<=s; 12 结合以上,gcd(a,b)=s; 13
    
    

          

    2.欧几里德算法:

    <1>.基本原理:gcd(a,b)=gcd(b,a mod b)

    <2>.代码:
    欧几里德算法://递归
    int gcd(int a,int b)
    {
    	if (b==0) return a;
    	    else return gcd(b,a mod b);
    } 
    
    最小公倍数:
    int gbs(int m,int n)
    {    
        return m*n/gcd(m,n); 
    } 
    
    
    

     3.扩展欧几里德算法:

      <1>.形式:d=gcd(a,b)=ax+by;

      

      <2>.推导:

         设 ax1+by1=gcd(a,b);

      bx2+(a mod b)y2=gcd(b,a mod b);

      根据欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

      则:ax1+by1=bx2+(a mod b)y2;

      即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

      根据:x1=y2; y1=x2-(a/b)*y2;

         

       上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

    代码如下

    int exgcd(int a,int b,int &x,int &y)
    {
        if(b==0)
        {
            x=1;
            y=0;
            return a;
        }
        int r=exgcd(b,a%b,x,y);
        int t=x;
        x=y;
        y=t-a/b*y;
        return r;
    }
    

      

     如果您不太理解以上的程序,可以试着看看算法导论的伪代码:

     这个代码是实现起来和上面是一样的,只是在这里可以帮助理解

    EXTENDED-EUCLID(a,b) 
        if(b=0) 
            then return (a,1,0) 
        (d1,x1,y1) <- (d1,y1,x1-a/b*y ) 
        return (d,x,y) 
    

      

    个人觉得,要真正理解这个算法,还是需要通过刷题来领会




  • 相关阅读:
    matplotlib.pyplot.gca().set_xlim(初始值,末值) 与 matplotlib.pyplot.xticks()的区别
    MySql学习-5.查询2
    MySql学习-4.查询1
    SQL函数学习(一):substring()函数
    SQL函数学习(二):DATEADD() 函数
    SQL函数学习(三):convert()函数
    sql标识符和格式
    PIVOT就是行转列,UNPIVOT就是列传行
    行列转换之静态、动态、PIVOT方法
    sql Server函数大全
  • 原文地址:https://www.cnblogs.com/polebug/p/3536536.html
Copyright © 2011-2022 走看看