前置技能:HDU3376 Matrix Again
所以看到这个题,我们也会想着用最大费用最大流解决,因为从起点飞到终点再飞回来,就等于从起点飞两次到终点且这两次飞行除了起点终点之外没有访问超过一次的点。
考虑拆点限流,除起点终点以外的点容量是1(花费代表边权),起点终点容量是2。
输出方案的话,我是dfs两遍找出两条起点到终点的路径,然后分别正着倒着输出。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <queue>
#include <map>
using namespace std;
int n, m, hea[205], cnt, uu, vv, minCost, ss, tt, dis[205], pre[205];
int opt[2][105], tot[2];
const int oo=0x3f3f3f3f;
bool vis[205];
queue<int> d;
string qaq, qwq, ovo[105];
map<string,int> a;
struct Edge{
int too, nxt, val, cst;
}edge[40005];
void add_edge(int fro, int too, int val, int cst){
edge[cnt].nxt = hea[fro];
edge[cnt].too = too;
edge[cnt].val = val;
edge[cnt].cst = cst;
hea[fro] = cnt++;
}
void addEdge(int fro, int too, int val, int cst){
add_edge(fro, too, val, cst);
add_edge(too, fro, 0, -cst);
}
bool spfa(){
memset(dis, 0x3f, sizeof(dis));
memset(pre, -1, sizeof(pre));
d.push(ss);
vis[ss] = true;
dis[ss] = 0;
while(!d.empty()){
int x=d.front();
d.pop();
vis[x] = false;
for(int i=hea[x]; i!=-1; i=edge[i].nxt){
int t=edge[i].too;
if(dis[t]>dis[x]+edge[i].cst && edge[i].val>0){
dis[t] = dis[x] + edge[i].cst;
pre[t] = i;
if(!vis[t]){
vis[t] = true;
d.push(t);
}
}
}
}
return dis[tt]!=oo;
}
void mcmf(){
while(spfa()){
int tmp=oo;
for(int i=pre[tt]; i!=-1; i=pre[edge[i^1].too])
tmp = min(tmp, edge[i].val);
for(int i=pre[tt]; i!=-1; i=pre[edge[i^1].too]){
edge[i].val -= tmp;
edge[i^1].val += tmp;
minCost += tmp * edge[i].cst;
}
}
}
void dfs(int x, int o){
opt[o][++tot[o]] = x;
if(x==n) return ;
for(int i=hea[x]; i!=-1; i=edge[i].nxt){
int t=edge[i].too;
if(edge[i^1].val){
edge[i^1].val = 0;
dfs(t, o);
return ;
}
}
}
int main(){
memset(hea, -1, sizeof(hea));
cin>>n>>m;
for(int i=1; i<=n; i++){
cin>>qaq;
ovo[i] = qaq;
a[qaq] = i;
}
for(int i=1; i<=m; i++){
cin>>qaq>>qwq;
uu = a[qaq]; vv = a[qwq];
addEdge(uu+n, vv, oo, 0);
}
for(int i=1; i<=n; i++)
addEdge(i, i+n, 1, -1);
ss = 0; tt = 2 * n + 1;
addEdge(ss, 1, 2, 0);
addEdge(2*n, tt, 2, 0);
addEdge(1, 1+n, 1, -1);
addEdge(n, n+n, 1, -1);
mcmf();
if(minCost==0){
cout<<"No Solution!"<<endl;
return 0;
}
cout<<(-minCost-2)<<endl;
dfs(1, 0);
dfs(1, 1);
for(int i=1; i<=tot[0]; i++)
if(opt[0][i]>=1 && opt[0][i]<=n)
cout<<ovo[opt[0][i]]<<endl;
for(int i=tot[1]-1; i>=1; i--)
if(opt[1][i]>=1 && opt[1][i]<=n)
cout<<ovo[opt[1][i]]<<endl;
return 0;
}