zoukankan      html  css  js  c++  java
  • Semi-supervised Learning

    Semi-supervised Learning

    1. What is Semi-supervised Learning

    1. Supervised Learning

      labeled data:({(x^r,hat{y}^r}_{r=1}^R)

      E.g: image,(hat{y}^r): class labeles

    2. Unsupervised Learning

      unlabeled data:({x^r}_{r=1}^R)

      E.g: Clustering problem

    3. Semi-supervised Learning

      both labeled data and unlabeled data:({(x^r,hat{y}^r)}_{r=1}^R,{x^u}_{u=R}^{R+U})

      • A set of unlabeled data,usually U >> R
      • Transductive Learning: unlabeled data is the testing data
      • Inductive Learning: unlabeled data is not the testing data

    2. Why Semi-supervied Learning

    • It's easy to collect unlabeled data
    • We do semi-supervied learning in our lives
    ---- suffer now and live the rest of your life as a champion ----
  • 相关阅读:
    HDU4611+数学
    HDU4612+Tarjan缩点+BFS求树的直径
    HDU4602+推导公式
    HDU4607+BFS
    HDU1353+贪心
    HDU4545+LCS
    HDU4548+素数
    HDU4539+状态压缩DP
    HDU2110+母函数
    HDU1569+最大点权集
  • 原文地址:https://www.cnblogs.com/popodynasty/p/14397568.html
Copyright © 2011-2022 走看看