problem 1:
$min_{eta} ~f_alpha(eta):=frac{1}{2}Vert y-XetaVert^2 +alphaVert etaVert$
problem 2:
$min_{eta} ~frac{1}{2}Vert y-XetaVert^2 \ s.t.~Vert etaVert-cleq 0$
problem 2 Lagrangian:
$mathcal{L}(eta,lambda)=frac{1}{2}Vert y-XetaVert^2+lambda (Vert etaVert-c)$
kkt shows:
dual-inner optimal:$eta^*=min_{eta}~mathcal{L}(eta,lambda):=frac{1}{2}Vert y-XetaVert^2+lambda (Vert etaVert-c)$
primal-inner optimal:$lambda^*(Vert etaVert-c)=0$
for problem 1:
$eta^*=min_{eta} ~f_alpha(eta):=frac{1}{2}Vert y-XetaVert^2 +alphaVert etaVert$
set $lambda = alpha$ and $c=Vert etaVert$
can see both kkt conditions meet