zoukankan      html  css  js  c++  java
  • 2.6. Statistical Models, Supervised Learning and Function Approximation

    Statical model

    • regression

      $y_i=f_{ heta}(x_i)+epsilon_i,E(epsilon)=0$
      1.$epsilonsim N(0,sigma^2)$ 2.使用最大似然估计$ ightarrow$最小二乘
      $ysim N(f_{ heta}(x),sigma^2)$
      $L( heta)=-frac{N}{2}log(2pi)-Nlogsigma -frac{1}{2sigma^2}sum_ileft(y_i-f_{ heta}(x_i) ight)^2$
    • classification

      $p_{ heta}(g_i=k|X=x_i),k=1cdots K$
      此处使用最大似然估计等同于Cross entropy和KL散度
      对于单个数据点$(x,g=k)$来说,其所属类别$g=k$为1,其余类别为0
      • $L( heta)=logp(g=k|x)$ 需要最大化
      • $CE(p,q)=-sum_x p(x)logq(x)$
        对应到本例$CE=-sum_i p(g=i)logp(g=i|x_i)=-logp(g=k|x)$ 需要最小化
      • $KL(p,q)=sum_x p(x)logfrac{p(x)}{q(x)}$
        对应本例$KL=sum_i p(g=i)logfrac{p(g=i)}{p(g=i|x)}=logfrac{1}{p(g=k|x)}=-logp(g=k|x)$需要最小化
  • 相关阅读:
    Sherlock and Squares
    [leetcode] Super Ugly Number
    [leetcode] Ugly Number II
    [leetcode] Ugly Number
    [leetcode] Burst Balloons
    菜根谭#268
    菜根谭#267
    菜根谭#266
    菜根谭#265
    菜根谭#264
  • 原文地址:https://www.cnblogs.com/porco/p/4721088.html
Copyright © 2011-2022 走看看