zoukankan      html  css  js  c++  java
  • 最喜欢的算法(们)

    String Matching: Levenshtein distance

    • Purpose: to use as little effort to convert one string into the other
    • Intuition behind the method: replacement, addition or deletion of a charcter in a string
    • Steps

    Step

    Description

    1

    Set n to be the length of s.

    Set m to be the length of t.

    If n = 0, return m and exit.

    If m = 0, return n and exit.

    Construct a matrix containing 0..m rows and 0..n columns.

    2

    Initialize the first row to 0..n.

    Initialize the first column to 0..m.

    3

    Examine each character of s (i from 1 to n).

    4

    Examine each character of t (j from 1 to m).

    5

    If s[i] equals t[j], the cost is 0.

    If s[i] doesn't equal t[j], the cost is 1.

    6

    Set cell d[i,j] of the matrix equal to the minimum of:

    a. The cell immediately above plus 1: d[i-1,j] + 1.

    b. The cell immediately to the left plus 1: d[i,j-1] + 1.

    c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.

    7

    After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m].

    • Example

    This section shows how the Levenshtein distance is computed when the source string is "GUMBO" and the target string is "GAMBOL".

    Steps 1 and 2

        G U M B O
      0 1 2 3 4 5
    G 1          
    A 2          
    M 3          
    B 4          
    O 5          
    L 6          

    Steps 3 to 6 When i = 1

        G U M B O
      0 1 2 3 4 5
    G 1 0        
    A 2 1        
    M 3 2        
    B 4 3        
    O 5 4        
    L 6 5        

    Steps 3 to 6 When i = 2

        G U M B O
      0 1 2 3 4 5
    G 1 0 1      
    A 2 1 1      
    M 3 2 2      
    B 4 3 3      
    O 5 4 4      
    L 6 5 5      

    Steps 3 to 6 When i = 3

        G U M B O
      0 1 2 3 4 5
    G 1 0 1 2    
    A 2 1 1 2    
    M 3 2 2 1    
    B 4 3 3 2    
    O 5 4 4 3    
    L 6 5 5 4    

    Steps 3 to 6 When i = 4

        G U M B O
      0 1 2 3 4 5
    G 1 0 1 2 3  
    A 2 1 1 2 3  
    M 3 2 2 1 2  
    B 4 3 3 2 1  
    O 5 4 4 3 2  
    L 6 5 5 4 3  

    Steps 3 to 6 When i = 5

        G U M B O
      0 1 2 3 4 5
    G 1 0 1 2 3 4
    A 2 1 1 2 3 4
    M 3 2 2 1 2 3
    B 4 3 3 2 1 2
    O 5 4 4 3 2 1
    L 6 5 5 4 3 2

    Step 7

    The distance is in the lower right hand corner of the matrix, i.e. 2. This corresponds to our intuitive realization that "GUMBO" can be transformed into "GAMBOL" by substituting "A" for "U" and adding "L" (one substitution and 1 insertion = 2 changes).

     

  • 相关阅读:
    [wikioi]最长严格上升子序列
    [leetcode]Pascal's Triangle II
    [leetcode]Remove Duplicates from Sorted Array II
    [leetcode]Remove Duplicates from Sorted List
    STL中set底层实现方式
    有N个大小不等的自然数(1--N),请将它们由小到大排序。要求程序算法:时间复杂度为O(n),空间复杂度为O(1)。
    C#基本语句
    C#程序大打开
    如何知道自己是工作组计算机中的哪个
    weka平台
  • 原文地址:https://www.cnblogs.com/postmodernist/p/5177424.html
Copyright © 2011-2022 走看看