题目链接 : https://leetcode-cn.com/problems/edit-distance/
题目描述:
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例:
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
思路:
动态规划:
dp[i][j]
代表word1
到i
位置转换成word2
到j
位置需要最少步数
所以,
当word1[i] == word2[j]
,dp[i][j] = dp[i-1][j-1]
;
当word1[i] != word2[j]
,dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
其中,dp[i-1][j-1]
表示替换操作,dp[i-1][j]
表示删除操作, dp[i][j-1]
表示插入操作.
注意,针对第一行,第一列要单独考虑,我们引入''
下图所示:
第一行,是word1
为空变成word2
最少步数,就是插入操作
第一列,是word2
为空,需要的最少步数,就是删除操作
再附上自顶向下的方法,大家可以提供 Java
版吗?
代码:
自底向上
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
n1 = len(word1)
n2 = len(word2)
dp = [[0] * (n2 + 1) for _ in range(n1 + 1)]
# 第一行
for j in range(1, n2 + 1):
dp[0][j] = dp[0][j-1] + 1
# 第一列
for i in range(1, n1 + 1):
dp[i][0] = dp[i-1][0] + 1
for i in range(1, n1 + 1):
for j in range(1, n2 + 1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1] ) + 1
#print(dp)
return dp[-1][-1]
java
class Solution {
public int minDistance(String word1, String word2) {
int n1 = word1.length();
int n2 = word2.length();
int[][] dp = new int[n1 + 1][n2 + 1];
// 第一行
for (int j = 1; j <= n2; j++) dp[0][j] = dp[0][j - 1] + 1;
// 第一列
for (int i = 1; i <= n1; i++) dp[i][0] = dp[i - 1][0] + 1;
for (int i = 1; i <= n1; i++) {
for (int j = 1; j <= n2; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
}
}
return dp[n1][n2];
}
}
自顶向下
import functools
class Solution:
@functools.lru_cache(None)
def minDistance(self, word1: str, word2: str) -> int:
if not word1 or not word2:
return len(word1) + len(word2)
if word1[0] == word2[0]:
return self.minDistance(word1[1:], word2[1:])
else:
inserted = 1 + self.minDistance(word1, word2[1:])
deleted = 1 + self.minDistance(word1[1:], word2)
replace = 1 + self.minDistance(word1[1:], word2[1:])
return min(inserted, deleted, replace)