zoukankan      html  css  js  c++  java
  • [LeetCode] 77. 组合

    题目链接 : https://leetcode-cn.com/problems/combinations/

    题目描述:

    给定两个整数 nk,返回 1 ... n 中所有可能的 k 个数的组合。

    示例:

    输入: n = 4, k = 2
    输出:
    [
      [2,4],
      [3,4],
      [2,3],
      [1,2],
      [1,3],
      [1,4],
    ]
    

    思路:

    思路一: 库函数

    class Solution:
        def combine(self, n: int, k: int) -> List[List[int]]:
            return list(itertools.combinations(range(1, n+1), k))
    

    思路二: 回溯算法

    代码:

    思路二

    class Solution:
        def combine(self, n: int, k: int) -> List[List[int]]:
            res = []
            def backtrack(i, k, tmp):
                if k == 0:
                    res.append(tmp)
                    return 
                for j in range(i, n + 1):
                    backtrack(j+1, k-1, tmp + [j])
            backtrack(1, k, [])
            return res
    

    java

    class Solution {
        public List<List<Integer>> combine(int n, int k) {
            List<List<Integer>> res = new ArrayList<>();
            backtrack(1, n, k, res, new ArrayList<Integer>());
            return res;
        }
    
        public void backtrack(int i, int n, int k, List<List<Integer>> res, ArrayList<Integer> tmp) {
            if (k == 0) {
                res.add(new ArrayList<>(tmp));
                return;
            }
            for (int j = i; j <= n; j++) {
                tmp.add(j);
                backtrack(j + 1, n, k - 1, res, tmp);
                tmp.remove(tmp.size() - 1);
            }
        }
    }
    

    类似题目还有:

    39.组合总和

    40. 组合总和 II

    46. 全排列

    47. 全排列 II

    78. 子集

    90. 子集 II

    这类题目都是同一类型的,用回溯算法!

    其实回溯算法关键在于:不合适就退回上一步

    然后通过约束条件, 减少时间复杂度.

    大家可以从下面的解法找出一点感觉!

    78. 子集

    class Solution:
    	def subsets(self, nums):		
            if not nums:
    			return []
    		res = []
    		n = len(nums)
    
    		def helper(idx, temp_list):
    			res.append(temp_list)
    			for i in range(idx, n):
    				helper(i + 1, temp_list + [nums[i]])
    
    		helper(0, [])
    		return res
    

    90. 子集 II

    class Solution(object):
        def subsetsWithDup(self, nums):
            """
            :type nums: List[int]
            :rtype: List[List[int]]
            """
            if not nums:
                return []
            n = len(nums)
            res = []
            nums.sort()
    		# 思路1
            def helper1(idx, n, temp_list):
                if temp_list not in res:
                    res.append(temp_list)
                for i in range(idx, n):
                    helper1(i + 1, n, temp_list + [nums[i]])
    		# 思路2
            def helper2(idx, n, temp_list):
                res.append(temp_list)
                for i in range(idx, n):
                    if i > idx and  nums[i] == nums[i - 1]:
                        continue
                    helper2(i + 1, n, temp_list + [nums[i]])
    
            helper2(0, n, [])
            return res
    

    46. 全排列

    class Solution(object):
        def permute(self, nums):
            """
            :type nums: List[int]
            :rtype: List[List[int]]
            """
            if not nums:
                return
            res = []
            n = len(nums)
            visited = [0] * n
            def helper1(temp_list,length):
                if length == n:
                    res.append(temp_list)
                for i in range(n):
                    if visited[i] :
                        continue
                    visited[i] = 1
                    helper1(temp_list+[nums[i]],length+1)
                    visited[i] = 0
            def helper2(nums,temp_list,length):
                if length == n:
                    res.append(temp_list)
                for i in range(len(nums)):
                    helper2(nums[:i]+nums[i+1:],temp_list+[nums[i]],length+1)
            helper1([],0)
            return res
    

    47. 全排列 II

    class Solution(object):
        def permuteUnique(self, nums):
            """
            :type nums: List[int]
            :rtype: List[List[int]]
            """
            if not nums:
    			return []
    		nums.sort()
    		n = len(nums)
    		visited = [0] * n
    		res = []
    
    		def helper1(temp_list, length):
    			# if length == n and temp_list not in res:
    			# 	res.append(temp_list)
    			if length == n:
    				res.append(temp_list)
    			for i in range(n):
    				if visited[i] or (i > 0 and nums[i] == nums[i - 1] and not visited[i - 1]):
    					continue
    				visited[i] = 1
    				helper1(temp_list + [nums[i]], length + 1)
    				visited[i] = 0
    
    		def helper2(nums, temp_list, length):
    			if length == n and temp_list not in res:
    				res.append(temp_list)
    			for i in range(len(nums)):
    				helper2(nums[:i] + nums[i + 1:], temp_list + [nums[i]], length + 1)
    
    		helper1([],0)
    		# helper2(nums, [], 0)
    		return res
    

    39.组合总和

    class Solution(object):
        def combinationSum(self, candidates, target):
            """
            :type candidates: List[int]
            :type target: int
            :rtype: List[List[int]]
            """
            if not candidates:
                return []
            if min(candidates) > target:
                return []
            candidates.sort()
            res = []
    
            def helper(candidates, target, temp_list):
                if target == 0:
                    res.append(temp_list)
                if target < 0:
                    return
                for i in range(len(candidates)):
                    if candidates[i] > target:
                        break
                    helper(candidates[i:], target - candidates[i], temp_list + [candidates[i]])
            helper(candidates,target,[])
            return res
    
    

    40. 组合总和 II

    class Solution:
        def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
            if not candidates:
                return []
            candidates.sort()
            n = len(candidates)
            res = []
            
            def backtrack(i, tmp_sum, tmp_list):
                if tmp_sum == target:
                    res.append(tmp_list)
                    return 
                for j in range(i, n):
                    if tmp_sum + candidates[j]  > target : break
                    if j > i and candidates[j] == candidates[j-1]:continue
                    backtrack(j + 1, tmp_sum + candidates[j], tmp_list + [candidates[j]])
            backtrack(0, 0, [])    
            return res
    
    
  • 相关阅读:
    【css基础修炼之路】— 谈谈元素的垂直水平居中
    git在linux安装步骤详解!!
    idea :不支持发行版本11问题
    centos7 升级gcc
    mysql--优化
    Docker安装
    使用idea从零编写SpringCloud项目-zuul
    使用idea从零编写SpringCloud项目-Hystrix
    使用idea从零编写SpringCloud项目-Feign
    使用idea从零编写SpringCloud项目-Ribbo
  • 原文地址:https://www.cnblogs.com/powercai/p/10960463.html
Copyright © 2011-2022 走看看