zoukankan      html  css  js  c++  java
  • [LeetCode] 84. 柱状图中最大的矩形

    题目链接 : https://leetcode-cn.com/problems/largest-rectangle-in-histogram/

    题目描述:

    给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

    求在该柱状图中,能够勾勒出来的矩形的最大面积。

    以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。

    图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

    示例:

    输入: [2,1,5,6,2,3]
    输出: 10
    

    思路:

    首先,想找到第i位置最大面积是什么?

    是以i为中心,向左找第一个小于heights[i]的位置left_i;向右找第一个小于于heights[i]的位置right_i,即最大面积为heights[i] * (right_i - left_i -1),如下图所示:

    所以,我们的问题就变成如何找right_ileft_i?

    最简单的思路就是,就是暴力法,直接分别在i左右移动

    class Solution:
        def largestRectangleArea(self, heights: List[int]) -> int:
            res = 0
            n = len(heights)
            for i in range(n):
                left_i = i
                right_i = i
                while left_i >= 0 and heights[left_i] >= heights[i]:
                    left_i -= 1
                while right_i < n and heights[right_i] >= heights[i]:
                    right_i += 1
                res = max(res, (right_i - left_i - 1) * heights[i])
            return res
    

    但是,这是一个时间复杂度为(O(n^2)),超时

    接下来想办法优化.

    思路一:

    当我们找i左边第一个小于heights[i]如果heights[i-1] >= heights[i]其实就是和heights[i-1]左边第一个小于heights[i-1]一样.依次类推,右边同理.

    思路二:栈

    利用单调栈,我写过关于它一篇文章

    维护一个单调递增的栈,就可以找到left_iright_i

    代码:

    思路一:

    class Solution:
        def largestRectangleArea(self, heights: List[int]) -> int:
            if not heights:
                return 0
            n = len(heights)
            left_i = [0] * n
            right_i = [0] * n
            left_i[0] = -1
            right_i[-1] = n
            for i in range(1, n):
                tmp = i - 1
                while tmp >= 0 and heights[tmp] >= heights[i]:
                    tmp = left_i[tmp]
                left_i[i] = tmp
            for i in range(n - 2, -1, -1):
                tmp = i + 1
                while tmp < n and heights[tmp] >= heights[i]:
                    tmp = right_i[tmp]
                right_i[i] = tmp
            # print(left_i)
            # print(right_i)
            res = 0
            for i in range(n):
                res = max(res, (right_i[i] - left_i[i] - 1) * heights[i])
            return res
    

    java

    class Solution {
        public int largestRectangleArea(int[] heights) {
            if (heights == null || heights.length == 0) return 0;
            int n = heights.length;
            int[] left_i = new int[n];
            int[] right_i = new int[n];
            left_i[0] = -1;
            right_i[n - 1] = n;
            int res = 0;
            for (int i = 1; i < n; i++) {
                int tmp = i - 1;
                while (tmp >= 0 && heights[tmp] >= heights[i]) tmp = left_i[tmp];
                left_i[i] = tmp;
            }
            for (int i = n - 2; i >= 0; i--) {
                int tmp = i + 1;
                while (tmp < n && heights[tmp] >= heights[i]) tmp = right_i[tmp];
                right_i[i] = tmp;
            }
            for (int i = 0; i < n; i++) res = Math.max(res, (right_i[i] - left_i[i] - 1) * heights[i]);
            return res;  
        }
    }
    

    思路二:

    class Solution:
        def largestRectangleArea(self, heights: List[int]) -> int:
            stack = []
            heights = [0] + heights + [0]
            res = 0
            for i in range(len(heights)):
                #print(stack)
                while stack and heights[stack[-1]] > heights[i]:
                    tmp = stack.pop()
                    res = max(res, (i - stack[-1] - 1) * heights[tmp])
                stack.append(i)
            return res
    

    java

    class Solution {
        public int largestRectangleArea(int[] heights) {
            int res = 0;
            Deque<Integer> stack = new ArrayDeque<>();
            int[] new_heights = new int[heights.length + 2];
            for (int i = 1; i < heights.length + 1; i++) new_heights[i] = heights[i - 1];
            //System.out.println(Arrays.toString(new_heights));
            for (int i = 0; i < new_heights.length; i++) {
                //System.out.println(stack.toString());
                while (!stack.isEmpty() && new_heights[stack.peek()] > new_heights[i]) {
                    int cur = stack.pop();
                    res = Math.max(res, (i - stack.peek() - 1) * new_heights[cur]);
                }
                stack.push(i);
            }
            return res;  
        }
    }
    
  • 相关阅读:
    SpringMVC——拦截器及文件上传和下载
    SpringMVC——数据处理
    SpringMVC——返回结果及指定视图
    SpringMVC——SpringMVC配置
    SpringMVC——简介及原理简单分析
    Kakfa和其他类型消息中间件对比图
    Kafka消费者——结合spring开发
    Kafka生产者——结合spring开发
    五大浏览器-四大内核
    python中查看module和function的方法
  • 原文地址:https://www.cnblogs.com/powercai/p/10987169.html
Copyright © 2011-2022 走看看