zoukankan      html  css  js  c++  java
  • pytorch版yolov3训练自己数据集

    1. 环境搭建

    1. 将github库download下来。
    git clone https://github.com/ultralytics/yolov3.git
    
    1. 建议在linux环境下使用anaconda进行搭建
    conda create -n yolov3 python=3.7
    
    1. 安装需要的软件
    pip install -r requirements.txt
    

    环境要求:

    • python >= 3.7
    • pytorch >= 1.1
    • numpy
    • tqdm
    • opencv-python

    其中只需要注意pytorch的安装:

    https://pytorch.org/中根据操作系统,python版本,cuda版本等选择命令即可。

    关于深度学习环境搭建请参看:https://www.cnblogs.com/pprp/p/9463974.html

    anaconda常用用法:https://www.cnblogs.com/pprp/p/9463124.html

    2. 数据集构建

    1. xml文件生成需要Labelimg软件

    在Windows下使用LabelImg软件进行标注,能在网上下载,或者通过github搜索得到。

    • 使用快捷键:
    Ctrl + u  加载目录中的所有图像,鼠标点击Open dir同功能
    Ctrl + r  更改默认注释目标目录(xml文件保存的地址) 
    Ctrl + s  保存
    Ctrl + d  复制当前标签和矩形框
    space     将当前图像标记为已验证
    w         创建一个矩形框
    d         下一张图片
    a         上一张图片
    del       删除选定的矩形框
    Ctrl++    放大
    Ctrl--    缩小
    ↑→↓←        键盘箭头移动选定的矩形框
    

    2. VOC2007 数据集格式

    -data
        - VOCdevkit2007
            - VOC2007
                - Annotations (标签XML文件,用对应的图片处理工具人工生成的)
                - ImageSets (生成的方法是用sh或者MATLAB语言生成)
                    - Main
                        - test.txt
                        - train.txt
                        - trainval.txt
                        - val.txt
                - JPEGImages(原始文件)
                - labels (xml文件对应的txt文件)
    

    通过以上软件主要构造好JPEGImages和Annotations文件夹中内容,Main文件夹中的txt文件可以通过python脚本生成:

    import os  
    import random  
      
    trainval_percent = 0.8
    train_percent = 0.8  
    xmlfilepath = 'Annotations'  
    txtsavepath = 'ImageSetsMain'  
    total_xml = os.listdir(xmlfilepath)  
      
    num=len(total_xml)  
    list=range(num)  
    tv=int(num*trainval_percent)  
    tr=int(tv*train_percent)  
    trainval= random.sample(list,tv)  
    train=random.sample(trainval,tr)  
      
    ftrainval = open('ImageSets/Main/trainval.txt', 'w')  
    ftest = open('ImageSets/Main/test.txt', 'w')  
    ftrain = open('ImageSets/Main/train.txt', 'w')  
    fval = open('ImageSets/Main/val.txt', 'w')  
      
    for i  in list:  
        name=total_xml[i][:-4]+'
    '  
        if i in trainval:  
            ftrainval.write(name)  
            if i in train:  
                ftrain.write(name)  
            else:  
                fval.write(name)  
        else:  
            ftest.write(name)  
      
    ftrainval.close()  
    ftrain.close()  
    fval.close()  
    ftest.close()
    

    生成labels文件,voc_label.py文件具体内容如下:

    # -*- coding: utf-8 -*-
    """
    Created on Tue Oct  2 11:42:13 2018
    将本文件放到VOC2007目录下,然后就可以直接运行
    需要修改的地方:
    1. sets中替换为自己的数据集
    2. classes中替换为自己的类别
    3. 将本文件放到VOC2007目录下
    4. 直接开始运行
    """
    
    import xml.etree.ElementTree as ET
    import pickle
    import os
    from os import listdir, getcwd
    from os.path import join
    sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]  #替换为自己的数据集
    classes = ["head", "eye", "nose"]     #修改为自己的类别
    #classes = ["eye", "nose"]
    
    def convert(size, box):
        dw = 1./(size[0])
        dh = 1./(size[1])
        x = (box[0] + box[1])/2.0 - 1
        y = (box[2] + box[3])/2.0 - 1
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x*dw
        w = w*dw
        y = y*dh
        h = h*dh
        return (x,y,w,h)
    def convert_annotation(year, image_id):
        in_file = open('VOC%s/Annotations/%s.xml'%(year, image_id))  #将数据集放于当前目录下
        out_file = open('VOC%s/labels/%s.txt'%(year, image_id), 'w')
        tree=ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult)==1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            bb = convert((w,h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '
    ')
    wd = getcwd()
    for year, image_set in sets:
        if not os.path.exists('VOC%s/labels/'%(year)):
            os.makedirs('VOC%s/labels/'%(year))
        image_ids = open('VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
        list_file = open('%s_%s.txt'%(year, image_set), 'w')
        for image_id in image_ids:
            list_file.write('VOC%s/JPEGImages/%s.jpg
    '%(year, image_id))
            convert_annotation(year, image_id)
        list_file.close()   
    #os.system("cat 2007_train.txt 2007_val.txt > train.txt")     #修改为自己的数据集用作训练
    

    到底为止,VOC格式数据集构造完毕,但是还需要继续构造符合darknet格式的数据集(coco)。

    需要说明的是:如果打算使用coco评价标准,需要构造coco中json格式,如果要求不高,只需要VOC格式即可,使用作者写的mAP计算程序即可。

    voc的xml转coco的json文件脚本:xml2json.py

    
    # -*- coding: utf-8 -*-
    """
    Created on Tue Aug 28 15:01:03 2018
    需要改动xml_path and json_path
    """
    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    # @Description: xml转换到coco数据集json格式
     
    import os, sys, json,xmltodict
     
    from xml.etree.ElementTree import ElementTree, Element
    from collections import OrderedDict
     
    XML_PATH = "/home/learner/datasets/VOCdevkit2007/VOC2007/Annotations/test"
    JSON_PATH = "./test.json"
    json_obj = {}
    images = []
    annotations = []
    categories = []
    categories_list = []
    annotation_id = 1
     
    def read_xml(in_path):
        '''读取并解析xml文件'''
        tree = ElementTree()
        tree.parse(in_path)
        return tree
     
    def if_match(node, kv_map):
        '''判断某个节点是否包含所有传入参数属性
          node: 节点
          kv_map: 属性及属性值组成的map'''
        for key in kv_map:
            if node.get(key) != kv_map.get(key):
                return False
        return True
     
    def get_node_by_keyvalue(nodelist, kv_map):
        '''根据属性及属性值定位符合的节点,返回节点
          nodelist: 节点列表
          kv_map: 匹配属性及属性值map'''
        result_nodes = []
        for node in nodelist:
            if if_match(node, kv_map):
                result_nodes.append(node)
        return result_nodes
     
    def find_nodes(tree, path):
        '''查找某个路径匹配的所有节点
          tree: xml树
          path: 节点路径'''
        return tree.findall(path)
     
    print ("-----------------Start------------------")
    xml_names = []
    for xml in os.listdir(XML_PATH):
        #os.path.splitext(xml)
        #xml=xml.replace('Cow_','')
        xml_names.append(xml)
        
    
    '''xml_path_list=os.listdir(XML_PATH)
    os.path.split
    xml_path_list.sort(key=len)'''
    xml_names.sort(key=lambda x:int(x[:-4]))
    new_xml_names = []
    for i in xml_names:
        j = 'Cow_' + i
        new_xml_names.append(j)
    
    #print xml_names
    #print new_xml_names
    for xml in new_xml_names:
        tree = read_xml(XML_PATH + "/" + xml)
        object_nodes = get_node_by_keyvalue(find_nodes(tree, "object"), {})
        if len(object_nodes) == 0:
            print (xml, "no object")
            continue
        else:
            image = OrderedDict()
            file_name = os.path.splitext(xml)[0];  # 文件名
            para1 = file_name + ".jpg"
            height_nodes = get_node_by_keyvalue(find_nodes(tree, "size/height"), {})
            para2 = int(height_nodes[0].text)
            width_nodes = get_node_by_keyvalue(find_nodes(tree, "size/width"), {})
            para3 = int(width_nodes[0].text)
            
            fname=file_name[4:]
            para4 = int(fname)
            
            
                    
            for f,i in [("file_name",para1),("height",para2),("width",para3),("id",para4)]:
                image.setdefault(f,i)
    
                #print(image)
            images.append(image)    #构建images
              
         
            name_nodes = get_node_by_keyvalue(find_nodes(tree, "object/name"), {})
            xmin_nodes = get_node_by_keyvalue(find_nodes(tree, "object/bndbox/xmin"), {})
            ymin_nodes = get_node_by_keyvalue(find_nodes(tree, "object/bndbox/ymin"), {})
            xmax_nodes = get_node_by_keyvalue(find_nodes(tree, "object/bndbox/xmax"), {})
            ymax_nodes = get_node_by_keyvalue(find_nodes(tree, "object/bndbox/ymax"), {})
            for index, node in enumerate(object_nodes):
                annotation = {}
                segmentation = []
                bbox = []
                seg_coordinate = []     #坐标
                seg_coordinate.append(int(xmin_nodes[index].text))
                seg_coordinate.append(int(ymin_nodes[index].text))
                seg_coordinate.append(int(xmin_nodes[index].text))
                seg_coordinate.append(int(ymax_nodes[index].text))
                seg_coordinate.append(int(xmax_nodes[index].text))
                seg_coordinate.append(int(ymax_nodes[index].text))
                seg_coordinate.append(int(xmax_nodes[index].text))
                seg_coordinate.append(int(ymin_nodes[index].text))
                segmentation.append(seg_coordinate)
                width = int(xmax_nodes[index].text) - int(xmin_nodes[index].text)
                height = int(ymax_nodes[index].text) - int(ymin_nodes[index].text)
                area = width * height
                bbox.append(int(xmin_nodes[index].text))
                bbox.append(int(ymin_nodes[index].text))
                bbox.append(width)
                bbox.append(height)
         
                annotation["segmentation"] = segmentation
                annotation["area"] = area
                annotation["iscrowd"] = 0
                fname=file_name[4:]
                annotation["image_id"] = int(fname)
                annotation["bbox"] = bbox
                cate=name_nodes[index].text
                if cate=='head':
                    category_id=1
                elif cate=='eye':
                    category_id=2
                elif cate=='nose':
                    category_id=3
                annotation["category_id"] = category_id
                annotation["id"] = annotation_id
                annotation_id += 1
                annotation["ignore"] = 0
                annotations.append(annotation)
         
                if category_id in categories_list:
                    pass
                else:
                    categories_list.append(category_id)
                    categorie = {}
                    categorie["supercategory"] = "none"
                    categorie["id"] = category_id
                    categorie["name"] = name_nodes[index].text
                    categories.append(categorie)
         
    json_obj["images"] = images
    json_obj["type"] = "instances"
    json_obj["annotations"] = annotations
    json_obj["categories"] = categories
     
    f = open(JSON_PATH, "w")
    #json.dump(json_obj, f)
    json_str = json.dumps(json_obj)
    f.write(json_str)
    print ("------------------End-------------------")
    
    

    (运行bash yolov3/data/get_coco_dataset.sh,仿照格式将数据放到其中)

    但是这个库还需要其他模型:

    3. 创建*.names file,

    其中保存的是你的所有的类别,每行一个类别,如data/coco.names:

    head
    eye
    nose
    

    4. 更新data/coco.data,其中保存的是很多配置信息

    classes = 3 # 改成你的数据集的类别个数
    train = ./data/2007_train.txt # 通过voc_label.py文件生成的txt文件
    valid = ./data/2007_test.txt # 通过voc_label.py文件生成的txt文件
    names = data/coco.names # 记录类别
    backup = backup/ # 记录checkpoint存放位置
    eval = coco # 选择map计算方式
    

    5. 更新cfg文件,修改类别相关信息

    打开cfg文件夹下的yolov3.cfg文件,大体而言,cfg文件记录的是整个网络的结构,是核心部分,具体内容讲解请见:https://pprp.github.io/2018/09/20/tricks.html

    只需要更改每个[yolo]层前边卷积层的filter个数即可:

    每一个[region/yolo]层前的最后一个卷积层中的 filters=预测框的个数(mask对应的个数,比如mask=0,1,2, 代表使用了anchors中的前三对,这里预测框个数就应该是3*(classes+5) ,5的意义是4个坐标+1个置信度代表这个格子含有目标的概率,也就是论文中的tx,ty,tw,th,po

    举个例子:我有三个类,n = 3, 那么filter = 3x(n+5) = 24

    [convolutional]
    size=1
    stride=1
    pad=1
    filters=255 # 改为 24
    activation=linear
    
    
    [yolo]
    mask = 6,7,8
    anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
    classes=80 # 改为 3
    num=9
    jitter=.3
    ignore_thresh = .7
    truth_thresh = 1
    random=1
    

    6. 数据集格式说明

    - yolov3
        - data
          - 2007_train.txt
          - 2007_test.txt
          - coco.names
          - coco.data
          - annotations(json files)
          - images(将2007_train.txt中的图片放到train2014文件夹中,test同理)
            - train2014
              - 0001.jpg
              - 0002.jpg
            - val2014
              - 0003.jpg
              - 0004.jpg
          - labels(voc_labels.py生成的内容需要重新组织一下)
            - train2014
              - 0001.txt
              - 0002.txt
            - val2014
              - 0003.txt
              - 0004.txt
          - samples(存放待测试图片)
    

    2007_train.txt内容示例:

    /home/dpj/yolov3-master/data/images/val2014/Cow_1192.jpg
    /home/dpj/yolov3-master/data/images/val2014/Cow_1196.jpg
    .....
    

    注意images和labels文件架构一致性,因为txt是通过简单的替换得到的:

    images -> labels
    .jpg -> .txt
    

    3. 训练模型

    预训练模型:

    开始训练:

    python train.py --data data/coco.data --cfg cfg/yolov3.cfg
    

    如果日志正常输出那证明可以运行了

    如果中断了,可以恢复训练

    python train.py --data data/coco.data --cfg cfg/yolov3.cfg --resume
    

    4. 测试模型

    将待测试图片放到data/samples中,然后运行

    python detect.py --weights weights/best.pt
    

    5. 评估模型

    python test.py --weights weights/latest.pt
    

    如果使用cocoAPI使用以下命令:

    git clone https://github.com/cocodataset/cocoapi && cd cocoapi/PythonAPI && make && cd ../.. && cp -r cocoapi/PythonAPI/pycocotools yolov3
    cd yolov3
     
    python3 test.py --save-json --img-size 416
    Namespace(batch_size=32, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=416, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
    Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
                   Class    Images   Targets         P         R       mAP        F1
    Calculating mAP: 100%|█████████████████████████████████████████| 157/157 [05:59<00:00,  1.71s/it]
                     all     5e+03  3.58e+04     0.109     0.773      0.57     0.186
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.335
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.565
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.349
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.360
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.493
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.280
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.432
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.458
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.255
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.494
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.620
    
    python3 test.py --save-json --img-size 608 --batch-size 16
    Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data_cfg='data/coco.data', img_size=608, iou_thres=0.5, nms_thres=0.5, save_json=True, weights='weights/yolov3-spp.weights')
    Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)
                   Class    Images   Targets         P         R       mAP        F1
    Computing mAP: 100%|█████████████████████████████████████████| 313/313 [06:11<00:00,  1.01it/s]
                     all     5e+03  3.58e+04      0.12      0.81     0.611     0.203
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.366
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.607
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.386
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.207
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.485
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.296
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.464
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.494
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.331
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.517
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.618
    

    6. 可视化

    可以使用python -c from utils import utils;utils.plot_results()

    创建drawLog.py

    def plot_results():
        # Plot YOLO training results file 'results.txt'
        import glob
        import numpy as np
        import matplotlib.pyplot as plt
        #import os; os.system('rm -rf results.txt && wget https://storage.googleapis.com/ultralytics/results_v1_0.txt')
    
        plt.figure(figsize=(16, 8))
        s = ['X', 'Y', 'Width', 'Height', 'Objectness', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP']
        files = sorted(glob.glob('results.txt'))
        for f in files:
            results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 7, 8, 17, 18, 16]).T  # column 16 is mAP
            n = results.shape[1]
            for i in range(10):
                plt.subplot(2, 5, i + 1)
                plt.plot(range(1, n), results[i, 1:], marker='.', label=f)
                plt.title(s[i])
                if i == 0:
                    plt.legend()
        plt.savefig('./plot.png')
    if __name__ == "__main__":
        plot_results()
    

    7. 高级进阶-网络结构更改

    详细cfg文件讲解:https://pprp.github.io/2018/09/20/YOLO cfg文件解析/

    参考资料以及网络更改经验:https://pprp.github.io/2019/06/20/YOLO经验总结/

    欢迎在评论区进行讨论,也便于我继续完善该教程。

    ps: 最近写了一个一键生成脚本,可以直接将VOC2007数据格式转换为U版yolov3要求的格式,地址在这里:https://github.com/pprp/voc2007_for_yolo_torch

    ps: 如何添加注意力机制?https://www.cnblogs.com/pprp/p/12241054.html 这是《从零开始学习YOLOv3》系列教程的第7篇,剩余的可以关注GiantPandaCV公众号查看历史文章,或者直接翻阅笔者之前的历史文章。

    YOLOv4出来了,点击这篇文章查看笔者总结的YOLOv4梳理。

  • 相关阅读:
    如何才能写一份好的简历?—— 针对程序员的简历。
    【视频】自然框架之分页控件的使用方法(二) 下载、DLL说明和web.config的设置
    【自然框架】QuickPager分页控件,新增一种分页方式——伪URL分页(Postback版)
    【自然框架】QuickPager asp.net 分页控件的Ajax分页方式。
    帮助文档的数据库结构
    自然框架,拆分后的项目关系
    【自然框架】QuickPagerSQL——专门生成分页用的SQL的类库
    【自然框架】QuickPager分页控件的单独的源码 V2.0.4.2。
    【自然框架】n级下拉列表框的原理
    分享一个基于jQuery的锁定表格行列的js脚本。
  • 原文地址:https://www.cnblogs.com/pprp/p/10863496.html
Copyright © 2011-2022 走看看