zoukankan      html  css  js  c++  java
  • 基于Keras实现mnist-官方例子理解

    前言

    久闻keras大名,最近正好实训,借着这个机会好好学一下。

    首先推荐一个API,可能稍微有点旧,但是写的是真的好

    https://keras-cn.readthedocs.io/en/latest/

    还有一个tensorflow的API

    https://www.w3cschool.cn/tensorflow_python/?

    还有强烈推荐使用vscode+anaconda 配置环境

    环境

    安装anaconda和vscode,在conda中新建keras的环境。

    conda create -n keras python=3.6
    pip install tensorflow # 如果有GPU改为pip install tensorflow-gpu
    pip install keras
    

    正题

    mnist是入门级别的数据集,是一个基本的分类数据集。这次尝试构造深度神经网络来构造一个图像分类器。

    
    import keras
    from keras.datasets import mnist
    import numpy as np
    from PIL import Image
    import matplotlib.pyplot as plt
    from keras.models import Sequential
    from keras.layers import Dense,Conv2D,MaxPooling2D,Flatten
    import cv2
    import matplotlib
    matplotlib.use('TkAgg')
    
    batch_size=32
    num_classes=10
    
    (train_images,train_labels),(test_images,test_labels) = mnist.load_data()
    
    print(train_images.shape,train_labels.shape)
    print(test_images.shape,test_labels.shape)
    
    """
    将数据集中图片展示出来
    """
    
    def show_mnist(train_image,train_labels):
        n = 3
        m = 3
        fig = plt.figure()
        for i in range(n):
            for j in range(m):
                plt.subplot(n,m,i*n+j+1)
                #plt.subplots_adjust(wspace=0.2, hspace=0.8)
                index = i * n + j #当前图片的标号
                img_array = train_image[index]
                img = Image.fromarray(img_array)
                plt.title(train_labels[index])
                plt.imshow(img,cmap='Greys')
        plt.show()
    
    img_row,img_col,channel = 28,28,1
    
    mnist_input_shape = (img_row,img_col,1)
    
    #将数据维度进行处理
    train_images = train_images.reshape(train_images.shape[0],img_row,img_col,channel)
    test_images = test_images.reshape(test_images.shape[0],img_row,img_col,channel)
    
    train_images = train_images.astype("float32")
    test_images = test_images.astype("float32")
    
    ## 进行归一化处理
    train_images  /= 255
    test_images /= 255
    
    # 将类向量,转化为类矩阵
    # 从 5 转换为 0 0 0 0 1 0 0 0 0 0 矩阵
    train_labels = keras.utils.to_categorical(train_labels,num_classes)
    test_labels = keras.utils.to_categorical(test_labels,num_classes)
    
    
    
    """
    构造网络结构
    """
    model = Sequential()
    model.add(Conv2D(32,kernel_size=(3,3),
                        activation="relu",
                        input_shape=mnist_input_shape))
                        # kernalsize = 3*3 并没有改变数据维度
    model.add(Conv2D(16,kernel_size=(3,3),
                        activation="relu"
                        ))
    model.add(MaxPooling2D(pool_size=(2,2)))
                        # 进行数据降维操作
    model.add(Flatten())#Flatten层用来将输入“压平”,即把多维的输入一维化,
                        #常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。
    model.add(Dense(32,activation="relu"))
                        #全连接层
    model.add(Dense(num_classes,activation='softmax'))
    
    """
    编译网络模型,添加一些超参数
    """
    
    model.compile(loss=keras.losses.categorical_crossentropy,
                    optimizer=keras.optimizers.Adadelta(),
                    metrics=['accuracy'])
    
    model.fit(train_images,
                train_labels,
                batch_size=batch_size,
                epochs=5,
                verbose=1,
                validation_data=(test_images,test_labels),
                shuffle=True
                )
    
    score = model.evaluate(test_images,test_labels,verbose=1)
    
    print('test loss:',score[0])
    print('test accuracy:',score[1])
    

    其中涉及到几个keras中的点,感觉看完以后很透彻,但是这只是初步应用,之后还会继续再写的。

    jupyter notebook 版本的请访问:https://github.com/pprp/keras-example/tree/master/implement/mnist_keras/

    欢迎访问我的Github:https://www.github.com/pprp/ star fork 感激不尽

  • 相关阅读:
    Java实现各种内部排序算法
    Java实现堆排序(大根堆)
    Java对象的序列化和反序列化
    Java实现链式存储的二叉查找树(递归方法)
    337. House Robber III(包含I和II)
    318. Maximum Product of Word Lengths
    114. Flatten Binary Tree to Linked List
    106. Construct Binary Tree from Inorder and Postorder Traversal
    105. Construct Binary Tree from Preorder and Inorder Traversal
    96. Unique Binary Search Trees(I 和 II)
  • 原文地址:https://www.cnblogs.com/pprp/p/11006082.html
Copyright © 2011-2022 走看看