建立三个线程,A线程打印10次A,B线程打印10次B,C线程打印10次C,要求线程同时运行,交替打印10次ABC。
这个问题用Object的wait(),notify()就可以很方便的解决。
public class MyThreadPrinter2 implements Runnable {
private String name;
private Object prev;
private Object self;
private MyThreadPrinter2(String name, Object prev, Object self) {
this.name = name;
this.prev = prev;
this.self = self;
}
@Override
public void run() {
int count = 10;
while (count > 0) {
synchronized (prev) {
synchronized (self) {
System.out.print(name);
count--;
self.notify();
}
try {
prev.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//如果确实下面这段代码,那么会有两个线程无法退出,因为输出A的线程打印10次后,没办法调用notify()通知打印B的线程,以此内存.
synchronized (self){
self.notify();
}
}
public static void main(String[] args) throws Exception {
Object a = new Object();
Object b = new Object();
Object c = new Object();
MyThreadPrinter2 pa = new MyThreadPrinter2("A", c, a);
MyThreadPrinter2 pb = new MyThreadPrinter2("B", a, b);
MyThreadPrinter2 pc = new MyThreadPrinter2("C", b, c);
new Thread(pa).start();
new Thread(pb).start();
new Thread(pc).start(); }
}
先来解释一下其整体思路,从大的方向上来讲,该问题为三线程间的同步唤醒操作,主要的目的就是ThreadA->ThreadB->ThreadC->ThreadA循环执行三个线程。
为了控制线程执行的顺序,那么就必须要确定唤醒、等待的顺序,所以每一个线程必须同时持有两个对象锁,才能继续执行。
一个对象锁是prev,就是前一个线程所持有的对象锁。还有一个就是自身对象锁。主要的思想就是,为了控制执行的顺序,必须要先持有prev锁,也就前一个线程要释放自身对象锁,再去申请自身对象锁,两者兼备时打印,之后首先调用self.notify()释放自身对象锁,唤醒下一个等待线程,再调用prev.wait()释放prev对象锁,终止当前线程,等待循环结束后再次被唤醒。
运行上述代码,可以发现三个线程循环打印ABC,共10次。程序运行的主要过程就是A线程最先运行,持有C,A对象锁,后释放A,C锁,唤醒B。线程B等待A锁,再申请B锁,后打印B,再释放B,A锁,唤醒C,线程C等待B锁,再申请C锁,后打印C,再释放C,B锁,唤醒A。
看起来似乎没什么问题,但如果你仔细想一下,就会发现有问题,就是初始条件,三个线程按照A,B,C的顺序来启动,按照前面的思考,A唤醒B,B唤醒C,C再唤醒A。
但是这种假设依赖于JVM中线程调度、执行的顺序。具体来说就是,在main主线程启动ThreadA后,需要在ThreadA执行完,在prev.wait()等待时,再切回线程启动ThreadB,ThreadB执行完,在prev.wait()等待时,再切回主线程,启动ThreadC,只有JVM按照这个线程运行顺序执行,才能保证输出的结果是正确的。而这依赖于JVM的具体实现。
考虑一种情况,如下:如果主线程在启动A后,执行A,过程中又切回主线程,启动了ThreadB,ThreadC,之后,由于A线程尚未释放self.notify,也就是B需要在synchronized(prev)处等待,而这时C却调用synchronized(prev)获取了对b的对象锁。这样,在A调用完后,同时ThreadB获取了prev也就是a的对象锁,ThreadC的执行条件就已经满足了,会打印C,之后释放c,及b的对象锁,这时ThreadB具备了运行条件,会打印B,也就是循环变成了ACBACB了。这种情况,可以通过在run中主动释放CPU,来进行模拟。代码如下:
public void run() {
int count = 10;
while (count > 0) {
synchronized (prev) {
synchronized (self) {
System.out.print(name);
count--;
try{
Thread.sleep(1);
}
catch (InterruptedException e){
e.printStackTrace();
}
self.notify();
}
try {
prev.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//如果确实下面这段代码,那么会有两个线程无法退出,因为输出A的线程打印10次后,没办法调用notify()通知打印B的线程,以此内存.
synchronized (self){
self.notify();
}
}
运行后的打印结果就变成了ACBACB了。为了避免这种与JVM调度有关的不确定性。需要让A,B,C三个线程以确定的顺序启动,最终代码如下:
public class MyThreadPrinter2 implements Runnable {
private String name;
private Object prev;
private Object self;
private MyThreadPrinter2(String name, Object prev, Object self) {
this.name = name;
this.prev = prev;
this.self = self;
}
@Override
public void run() {
int count = 10;
while (count > 0) {
synchronized (prev) {
synchronized (self) {
System.out.print(name);
count--;
try{
Thread.sleep(1);
}
catch (InterruptedException e){
e.printStackTrace();
}
self.notify();
}
try {
prev.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//如果确实下面这段代码,那么会有两个线程无法退出,因为输出A的线程打印10次后,没办法调用notify()通知打印B的线程,以此内存.
synchronized (self){
self.notify();
}
}
public static void main(String[] args) throws Exception {
Object a = new Object();
Object b = new Object();
Object c = new Object();
MyThreadPrinter2 pa = new MyThreadPrinter2("A", c, a);
MyThreadPrinter2 pb = new MyThreadPrinter2("B", a, b);
MyThreadPrinter2 pc = new MyThreadPrinter2("C", b, c);
new Thread(pa).start();
Thread.sleep(10);
new Thread(pb).start();
Thread.sleep(10);
new Thread(pc).start();
Thread.sleep(10);
}
}
下面是用concurrent包实现的同样的逻辑代码。
public class MyThreadPrinter2 implements Runnable { private String name; private ReentrantLock prev; private ReentrantLock self; private Condition prevCondition; private Condition selfCondition; private MyThreadPrinter2(String name, ReentrantLock prev,Condition prevCondition, ReentrantLock self,Condition selfCondition) { this.name = name; this.prev = prev; this.self = self; this.prevCondition = prevCondition; this.selfCondition = selfCondition; } public void run() { int count = 10; while (count > 0) { prev.lock(); self.lock(); System.out.print(name); count--; selfCondition.signal(); self.unlock(); try { prevCondition.await(); } catch (InterruptedException e) { e.printStackTrace(); } finally { prev.unlock(); } } self.lock(); selfCondition.signal(); self.unlock(); } public static void main(String[] args) throws Exception { ReentrantLock a = new ReentrantLock(); Condition aCondition = a.newCondition(); ReentrantLock b = new ReentrantLock(); Condition bCondition = b.newCondition(); ReentrantLock c = new ReentrantLock(); Condition cCondition = c.newCondition(); MyThreadPrinter2 pa = new MyThreadPrinter2("A",c,cCondition,a,aCondition); MyThreadPrinter2 pb = new MyThreadPrinter2("B",a,aCondition,b,bCondition); MyThreadPrinter2 pc = new MyThreadPrinter2("C",b,bCondition,c,cCondition); new Thread(pa).start(); Thread.sleep(10); new Thread(pb).start(); Thread.sleep(10); new Thread(pc).start(); Thread.sleep(10); } }