zoukankan      html  css  js  c++  java
  • PCL特征提取与匹配(3):特征匹配问题解决

    本文原创:转载请注明出处,谢谢!

    使用2中的demo进行特征匹配,

    1. keypoint-methods(关键点提取方法)使用Harris3D角点检测,
    2. descriptor-types (特征点描述)使用FPFH
      运行到
      descriptor_kdtree.nearestKSearch(*source, i, k, k_indices, k_squared_distances);
      correspondences[i] = k_indices[0];
      
      遇到Assertion failed: point_representation_->isValid (point) && "Invalid (NaN, Inf) point coordinates given to nearestKSearch!", file C:pcl-1.9.1kdtreeincludepcl/kdtree/impl/kdtree_flann.hpp, line 136的错误

    解决方法

    1. 输出计算得到的特征描述子
      发现存在nan点

      printf("inf1");
      typename pcl::PointCloud<FeatureType>::iterator itr;
      for (itr = source->begin(); itr != source->end(); itr++)
      {
          std::cout << *itr << endl;
      }
      printf("inf2");
      
      (nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan)
      (1.43461, 0.68249, 7.00692, 5.67639, 0.586942, 14.6281, 1.97115, 50.7711, 13.3196, 2.07839, 1.84432, 0.0302716, 6.23244,5.27624, 2.1539, 10.8, 21.7394, 9.44449, 9.60597, 18.2812, 6.65871, 9.77746, 0.8217, 54.9463, 10.4616, 1.65747, 5.87402, 7.36899, 1.68395, 3.46515, 4.46561, 8.38836, 0.866902)
      ...    
      
    2. 剔除nan点
      本例中使用FPFH特征描述子,特征描述类型为pcl::FPFHSignature33,pcl::FPFHSignature33的结构中使用float histogram [33] = {0.f}来描述特征,详见PCL文档。并且demo中使用了模板编程,而对于不同的检测特征需要不同的nan点检测与剔除方法。因此需要对demo中findCorrespondences方法进行特化处理,针对pcl::FPFHSignature33类型的编写特定的nan点检测与剔除方法。

      //模板全特化pcl::FPFHSignature33
      template<>
      void ICCVTutorial<pcl::FPFHSignature33>::findCorrespondences(typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr source, typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr target, std::vector<int>& correspondences) const
      {
      std::cout << "correspondence assignment..." << std::flush;
      
      
      printf("inf1//////////////////////////////");
      std::cout << "source cloud size:" << static_cast<int> (source->size()) << endl;
      typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr tempSource(new pcl::PointCloud<pcl::FPFHSignature33>);
      typename pcl::PointCloud<pcl::FPFHSignature33>::iterator itr;
      for (itr = source->begin(); itr != source->end(); itr++)
      {
      	std::cout << *itr << endl;
      	auto hadNan = false; //是否有nan点
      	auto allzero = true; //是否全零
      	for (auto i = 0; i < 33; i++)
      	{
      		//std::cout << (itr->histogram)[i] << endl;
      		if (pcl_isnan((itr->histogram)[i]))
      		{
      			std::cout << "exisist nan" << endl;
      			std::cout << (itr->histogram)[i] << endl;
      			hadNan = true;
      			break;
      		}
      		if (0 != (itr->histogram)[i]) {
      			allzero = false;
      			break;
      		}
      
      	}
      	if (!hadNan && !allzero)
      	{
      		std::cout << "good cloud" << endl;
      		tempSource->push_back(*itr);
      	}
      
      }
      std::cout << "tempSource cloud size:" << static_cast<int> (tempSource->size()) << endl;
      
      source->clear();
      std::cout << "source cloud size:" << static_cast<int> (source->size()) << endl;
      //(源,目标)
      pcl::copyPointCloud(*tempSource, *source);
      std::cout << "source cloud size:" << static_cast<int> (source->size()) << endl;
      printf("inf2//////////////////////////////");
      
      //printf("inf3//////////////////////////////");
      std::cout << "target cloud size:" << static_cast<int> (target->size()) << endl;
      typename pcl::PointCloud<pcl::FPFHSignature33>::Ptr tempSource2(new pcl::PointCloud<pcl::FPFHSignature33>);
      for (itr = target->begin(); itr != target->end(); itr++)
      {
      	std::cout << *itr << endl;
      	auto hadNan = false; //是否有nan点
      	auto allzero = true; //是否全零
      	for (auto i = 0; i < 33; i++)
      	{
      		//std::cout << (itr->histogram)[i] << endl;
      		if (pcl_isnan((itr->histogram)[i]))
      		{
      			std::cout << "exisist nan" << endl;
      			std::cout << (itr->histogram)[i] << endl;
      			hadNan = true;
      			break;
      		}
      		if (0 != (itr->histogram)[i]) {
      			allzero = false;
      			break;
      		}
      
      	}
      	if (!hadNan && !allzero)
      	{
      		std::cout << "good cloud" << endl;
      		tempSource2->push_back(*itr);
      	}
      
      }
      std::cout << "tempSource2 cloud size:" << static_cast<int> (tempSource2->size()) << endl;
      
      target->clear();
      std::cout << "target cloud size:" << static_cast<int> (target->size()) << endl;
      //(源,目标)
      pcl::copyPointCloud(*tempSource2, *target);
      std::cout << "target cloud size:" << static_cast<int> (target->size()) << endl;
      //printf("inf4//////////////////////////////");
      
      
      correspondences.resize(source->size());
      
      
      // Use a KdTree to search for the nearest matches in feature space
      pcl::KdTreeFLANN<pcl::FPFHSignature33> descriptor_kdtree;
      descriptor_kdtree.setInputCloud(target);
      
      // Find the index of the best match for each keypoint, and store it in "correspondences_out"
      const int k = 1;
      std::vector<int> k_indices(k);
      std::vector<float> k_squared_distances(k);
      
      
      for (int i = 0; i < static_cast<int> (source->size()); ++i)
      {
      	descriptor_kdtree.nearestKSearch(*source, i, k, k_indices, k_squared_distances);
      	correspondences[i] = k_indices[0];
      }
      std::cout << "OK" << std::endl;
      }
      

      上述方法剔除了点云中的nan特征和描述子为全0的特征。

  • 相关阅读:
    E-Eating Together(POJ 3670)
    F-Dining Cows(POJ 3671)
    I-MooFest(POJ 1990)
    A-Apple Catching(POJ 2385)
    H-The Cow Lineup(POJ 1989)
    LOOPS(HDU 3853)
    Card Collector(HDU 4336)
    Help Me Escape (ZOJ 3640)
    Collecting Bugs(POJ 2096)
    c#大圣之路笔记——c# 从DataGrid中导出数据 Session
  • 原文地址:https://www.cnblogs.com/procorosso/p/12695484.html
Copyright © 2011-2022 走看看