zoukankan      html  css  js  c++  java
  • POJ2387(最短路入门)

    Til the Cows Come Home
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 38556   Accepted: 13104

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90
    注意:先输入边数后输入结点数,存在重边
    #include"cstdio"
    using namespace std;
    const int MAXN=1005;
    const int INF=0x3fffffff;
    int mp[MAXN][MAXN];
    int V,E;
    int vis[MAXN];
    int d[MAXN];
    int dijkstra(int s)
    {
        for(int i=1;i<=V;i++)
        {
            vis[i]=0;
            d[i]=mp[s][i];
        }
        vis[s]=1;
        
        for(int i=1;i<=V;i++)
        {
            int mincost,k;
            mincost=INF;
            for(int j=1;j<=V;j++)
            {
                if(!vis[j]&&d[j]<mincost)
                {
                    k=j;
                    mincost=d[j];
                }
            }
            
            vis[k]=1;
            for(int j=1;j<=V;j++)
            {
                if(!vis[j]&&d[j]>d[k]+mp[k][j])
                {
                    d[j]=d[k]+mp[k][j];
                }            
            }
            
        }
        return d[1];
    }
    int main()
    {
        while(scanf("%d%d",&E,&V)!=EOF)
        {
            for(int i=1;i<=V;i++)
                for(int j=1;j<=V;j++)
                    if(i==j)    mp[i][j]=0;
                    else    mp[i][j]=INF;
            for(int i=0;i<E;i++)
            {
                int u,v,cost;
                scanf("%d%d%d",&u,&v,&cost);
                if(cost<mp[u][v])    mp[u][v]=mp[v][u]=cost;//存在重边 
            }
            int ans=dijkstra(V);
            printf("%d
    ",ans);
        }
        return 0;
    }

    堆优化的dijkstra

    #include"cstdio"
    #include"vector"
    #include"queue"
    using namespace std;
    typedef pair<int,int> P;
    const int MAXN=1005;
    const int INF=0x3fffffff;
    int mp[MAXN][MAXN];
    int V,E;
    vector<int> G[MAXN];
    int d[MAXN];
    void dijkstra(int s,int end)
    {
        for(int i=1;i<=V;i++)    d[i]=INF;
        
        priority_queue<P, vector<P>,greater<P> > que;
        que.push(P(0,s));
        d[s]=0;
        
        while(!que.empty())
        {
            P p=que.top();que.pop();
            if(p.second==end)
            {
                printf("%d
    ",p.first);
                return ;
            }
            int v=p.second;
            if(d[v]<p.first)    continue;
            for(int i=0;i<G[v].size();i++)
            {
                int to=G[v][i];
                if(d[to]>d[v]+mp[v][to])
                {
                    d[to]=d[v]+mp[v][to];
                    que.push(P(d[to],to));    
                }
            }
        }
    }
    int main()
    {
        while(scanf("%d%d",&E,&V)!=EOF)
        {
            for(int i=1;i<=V;i++)
            {
                G[i].clear();
                for(int j=1;j<=V;j++)
                    if(i==j)    mp[i][j]=0;
                    else    mp[i][j]=INF;
            }
            for(int i=0;i<E;i++)
            {
                int u,v,cost;
                scanf("%d%d%d",&u,&v,&cost);
                G[v].push_back(u);
                G[u].push_back(v);
                if(cost<mp[u][v])    mp[v][u]=mp[u][v]=cost;
            }
            dijkstra(1,V);        
        }
        return 0;
    }

     spfa+前向星可解决重边问题。

    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    const int MAXN=1005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w,next;
    }es[4005];
    int head[MAXN],tot;
    int n,m;
    void addedge(int u,int v,int w)
    {
        es[tot].to=v;
        es[tot].w=w;
        es[tot].next=head[u];
        head[u]=tot++;
    }
    int d[MAXN],vis[MAXN];
    void spfa(int s)
    {
        for(int i=1;i<=n;i++)
        {
            d[i]=INF;
            vis[i]=0;
        }
        queue<int> que;
        que.push(s);
        d[s]=0;
        vis[s]=1;
        while(!que.empty())
        {
            int u=que.front();que.pop();
            vis[u]=0;
            for(int i=head[u];i!=-1;i=es[i].next)
            {
                Edge e=es[i];
                if(d[e.to]>d[u]+e.w)
                {
                    d[e.to]=d[u]+e.w;
                    if(!vis[e.to])
                    {
                        que.push(e.to);
                        vis[e.to]=1;
                    }
                }
            }
        }
        printf("%d
    ",d[n]);
    }
    int main()
    {
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            memset(head,-1,sizeof(head));
            tot=0;
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
            }
            spfa(1);
        }
        return 0;
    }

     Java版:

    前向星+spfa

    import java.util.Arrays;
    import java.util.LinkedList;
    import java.util.Scanner;
    import java.util.Queue;
    class Edge{
        int to,w,net;
        Edge(){}
        Edge(int to,int w,int net)
        {
            this.to=to;
            this.w=w;
            this.net=net;
        }
    }
    public class Main{
        static final int MAXN=1005;
        static final int INF=0x3f3f3f3f;
        static int m,n;
        static int[] head = new int[MAXN];
        static Edge[] es = new Edge[4005];
        static int tot;
        static void addedge(int u,int v,int w)
        {
            es[tot] = new Edge(v,w,head[u]);
            head[u] = tot++;
        }
        
        static int[] d = new int[MAXN];
        static boolean[] vis = new boolean[MAXN];
        static int spfa(int src,int ter)
        {
            Arrays.fill(vis, false);
            Arrays.fill(d, INF);
            Queue<Integer> que = new LinkedList<Integer>();
            que.add(src);
            d[src]=0;
            while(!que.isEmpty())
            {
                int u=que.peek();que.poll();
                vis[u]=false;
                for(int i=head[u];i!=-1;i=es[i].net)
                {
                    Edge e = es[i];
                    if(d[e.to]>d[u]+e.w)
                    {
                        d[e.to]=d[u]+e.w;
                        if(!vis[e.to])
                        {
                            que.add(e.to);
                            vis[e.to]=true;
                        }
                    }
                }
            }
            return d[ter];
        }
        public static void main(String[] args){
            Scanner in = new Scanner(System.in);
            while(in.hasNext())
            {
                tot=0;
                Arrays.fill(head, -1);
                m=in.nextInt();
                n=in.nextInt();
                for(int i=0;i<m;i++)
                {
                    int u,v,w;
                    u=in.nextInt();
                    v=in.nextInt();
                    w=in.nextInt();
                    addedge(u,v,w);
                    addedge(v,u,w);
                }
                int res=spfa(n,1);
                System.out.println(res);
            }
        }
    }
  • 相关阅读:
    BZOJ 3997: [TJOI2015]组合数学 [偏序关系 DP]
    [Sdoi2017]新生舞会 [01分数规划 二分图最大权匹配]
    [Sdoi2017]相关分析 [线段树]
    [Sdoi2017]硬币游戏 [高斯消元 KMP]
    [Sdoi2017]序列计数 [矩阵快速幂]
    [Sdoi2017]树点涂色 [lct 线段树]
    [Sdoi2017]数字表格 [莫比乌斯反演]
    BZOJ 3160: 万径人踪灭 [fft manacher]
    Rabbitmq常见测试
    MQ(消息队列)功能介绍
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5146137.html
Copyright © 2011-2022 走看看