zoukankan      html  css  js  c++  java
  • POJ2378(树形DP)

    Tree Cutting
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 4156   Accepted: 2512

    Description

    After Farmer John realized that Bessie had installed a "tree-shaped" network among his N (1 <= N <= 10,000) barns at an incredible cost, he sued Bessie to mitigate his losses. 

    Bessie, feeling vindictive, decided to sabotage Farmer John's network by cutting power to one of the barns (thereby disrupting all the connections involving that barn). When Bessie does this, it breaks the network into smaller pieces, each of which retains full connectivity within itself. In order to be as disruptive as possible, Bessie wants to make sure that each of these pieces connects together no more than half the barns on FJ. 

    Please help Bessie determine all of the barns that would be suitable to disconnect.

    Input

    * Line 1: A single integer, N. The barns are numbered 1..N. 

    * Lines 2..N: Each line contains two integers X and Y and represents a connection between barns X and Y.

    Output

    * Lines 1..?: Each line contains a single integer, the number (from 1..N) of a barn whose removal splits the network into pieces each having at most half the original number of barns. Output the barns in increasing numerical order. If there are no suitable barns, the output should be a single line containing the word "NONE".

    Sample Input

    10
    1 2
    2 3
    3 4
    4 5
    6 7
    7 8
    8 9
    9 10
    3 8

    Sample Output

    3
    8

    题意:问删除哪些结点后,剩余各个子树的大小均不超过总结点数目的一半。
    树形DP的核心:将有向树当作无向树,从根节点结点遍历到叶子节点,从叶子节点回缩到根节点。
    思路:一次DFS可求出每个结点的最大子树(不包含其本身)maxn以及子树之和sum(包含其本身),若(n-sum)<=n/2&&maxn<=n/2,则为答案。
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int MAXN=10005;
    vector<int> tree[MAXN];
    int n;
    int mx[MAXN];
    int sum[MAXN];
    void dfs(int u,int fa)
    {
        sum[u]=1;
        int maxn=0;
        int s=0;
        for(int i=0;i<tree[u].size();i++)
        {
            int v=tree[u][i];
            if(v==fa)
                continue;
            dfs(v,u);
            s+=sum[v];
            maxn=max(maxn,sum[v]);
        }
        mx[u]=maxn;
        sum[u]+=s;
    }
    int main()
    {
        while(scanf("%d",&n)!=EOF)
        {
            memset(sum,0,sizeof(sum));
            memset(mx,0,sizeof(mx));
            for(int i=1;i<=n;i++)
                tree[i].clear();
            
            for(int i=1;i<=n-1;i++)
            {
                int u,v;
                scanf("%d%d",&u,&v);
                tree[u].push_back(v);
                tree[v].push_back(u);
            }
            dfs(1,-1);
            bool flag=false;
            for(int i=1;i<=n;i++)
            {
                if(max(n-sum[i],mx[i])<=n/2)
                {
                    printf("%d
    ",i);
                    flag=true;
                }
            }
            if(!flag)    printf("NONE
    ");
        }
        return 0;
    }
  • 相关阅读:
    utf8编码和中文不能解码问题解决
    python环境的安装配置
    repo同一个仓的同一个changeId的提交
    Jenkins pipeline之将命令的运行结果赋值给变量
    repo和git常用的命令和场景
    docker 安装rabbitmq
    docker的一些概念
    mysql数据库sql优化原则
    数据库优化02
    MySQL数据库优化总结
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5223745.html
Copyright © 2011-2022 走看看