zoukankan      html  css  js  c++  java
  • POJ3111(最大化平均值)

    K Best
    Time Limit: 8000MS   Memory Limit: 65536K
    Total Submissions: 8458   Accepted: 2163
    Case Time Limit: 2000MS   Special Judge

    Description

    Demy has n jewels. Each of her jewels has some value vi and weight wi.

    Since her husband John got broke after recent financial crises, Demy has decided to sell some jewels. She has decided that she would keep k best jewels for herself. She decided to keep such jewels that their specific value is as large as possible. That is, denote the specific value of some set of jewels S = {i1i2, …, ik} as

    .

    Demy would like to select such k jewels that their specific value is maximal possible. Help her to do so.

    Input

    The first line of the input file contains n — the number of jewels Demy got, and k — the number of jewels she would like to keep (1 ≤ k ≤ n ≤ 100 000).

    The following n lines contain two integer numbers each — vi and wi (0 ≤ vi ≤ 106, 1 ≤ wi ≤ 106, both the sum of all vi and the sum of all wi do not exceed 107).

    Output

    Output k numbers — the numbers of jewels Demy must keep. If there are several solutions, output any one.

    Sample Input

    3 2
    1 1
    1 2
    1 3

    Sample Output

    1 2
    注意要用G++提交
    #include <iostream>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    const int MAXN=100005;
    const double EPS=1.0e-6;
    struct Node{
        int id,v,w;
    }a[MAXN];
    struct Dou{
        int id;
        double y;
    }b[MAXN];
    bool comp(const Dou &no1,const Dou &no2)
    {
        return no1.y > no2.y;
    }
    int n,k;
    bool test(double x)
    {
        for(int i=0;i<n;i++)
        {
            b[i].id=a[i].id;
            b[i].y=a[i].v-x*a[i].w;
        }
        sort(b,b+n,comp);
        double sum=0;
        for(int i=0;i<k;i++)
        {
            sum+=b[i].y;
        }
        return sum>=0.0;
    }
    int main()
    {
        while(cin>>n>>k)
        {
            for(int i=0;i<n;i++)
            {
                a[i].id=i+1;
                cin>>a[i].v>>a[i].w;
            }
            double l=0.0;
            double r=0x3f3f3f3f;
            while(r-l>EPS)
            {
                double mid=(l+r)/2;
                if(test(mid))    l=mid;
                else r=mid;
            }
            for(int i=0;i<k-1;i++)
            {
                cout<<b[i].id<<" ";
            }
            cout<<b[k-1].id<<endl;
        }
        return 0;
    }
  • 相关阅读:
    洛谷P1446/BZOJ1004 Cards Burnside引理+01背包
    HDU-4676 Sum Of Gcd 莫队+欧拉函数
    HDU-5378 概率DP
    HDU-5628 Clarke and math-狄利克雷卷积+快速幂
    容斥原理+补集转化+MinMax容斥
    2019牛客暑期多校训练营(第九场)A.The power of Fibonacci
    斐波那契额数列的性质
    莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
    广义Fibonacci数列找循环节 学习笔记
    苗条的生成树 Slim Span--洛谷
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5679146.html
Copyright © 2011-2022 走看看