小希的迷宫
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 42456 Accepted Submission(s): 13078
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Yes
Yes
No
注意:只有 0 0时输出Yes
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAXN=100005; int par[MAXN],vis[MAXN]; void prep() { for(int i=0;i<MAXN;i++) { vis[i]=0; par[i]=i; } } int fnd(int x) { if(par[x]==x) { return x; } return par[x]=fnd(par[x]); } void unite(int x,int y) { int a=fnd(x); int b=fnd(y); par[a]=b; } bool same(int x,int y) { return fnd(x)==fnd(y); } int main() { int u,v; while(scanf("%d%d",&u,&v)!=EOF) { if(u==-1&&v==-1) break; prep(); int mx=0; if(u==0&&v==0) { printf("Yes "); continue; } bool mark=true; do{ mx=max(max(u,v),mx); vis[u]=1; vis[v]=1; if(!same(u,v)) { unite(u,v); } else { mark=false; } scanf("%d%d",&u,&v); }while(u!=0||v!=0); if(mark) { int root=-1; int cnt=0; for(int i=1;i<=mx;i++) { if(vis[i]) { int fa=fnd(i); if(fa!=root) { root=fa; cnt++; } } } if(cnt==1) { printf("Yes "); } else { printf("No "); } } else { printf("No "); } } return 0; }