zoukankan      html  css  js  c++  java
  • POJ3264(RMQ-ST算法)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 47087   Accepted: 22101
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    const int MAXN=50005;
    int n,m;
    int maxm[MAXN][21],minm[MAXN][21];
    void init_st(int size)
    {
        for(int j=1;j<21;j++)
        {
            for(int i=1;i<=n;i++)
            {
                if(i+(1<<j)-1<=n)
                {
                    maxm[i][j]=max(maxm[i][j-1],maxm[i+(1<<(j-1))][j-1]);
                    minm[i][j]=min(minm[i][j-1],minm[i+(1<<(j-1))][j-1]);
                }
            }
        }
    }
    int rmq_st(int l,int r)
    {
        int limit=(int)(log(0.0+(r-l+1))/log(2.0));
        int mn=min(minm[l][limit],minm[r-(1<<limit)+1][limit]);
        int mx=max(maxm[l][limit],maxm[r-(1<<limit)+1][limit]);
        return mx-mn;
    }
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&maxm[i][0]);
                minm[i][0]=maxm[i][0];
            }
            init_st(n);
            for(int i=0;i<m;i++)
            {
                int l,r;
                scanf("%d%d",&l,&r);
                int res=rmq_st(l,r);
                printf("%d
    ",res);
            }
        }
        return 0;
    }
  • 相关阅读:
    51nod1381 硬币游戏
    51nod1381 硬币游戏
    51nod1384 全排列
    LOJ P10130 点的距离 题解
    POJ P1985 Cow Marathon 题解
    求树的直径(两种方法)
    洛谷 P3518 [POI2011] SEJ-Strongbox 题解
    洛谷 UVA12101 Prime Path 题解
    POJ P2251 Dungeon Master 题解
    POJ P3009 Curling 2.0 题解
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5781518.html
Copyright © 2011-2022 走看看