zoukankan      html  css  js  c++  java
  • POJ2773(容斥原理)

    Happy 2006
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 11458   Accepted: 4001

    Description

    Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006. 

    Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order. 

    Input

    The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

    Output

    Output the K-th element in a single line.

    Sample Input

    2006 1
    2006 2
    2006 3
    

    Sample Output

    1
    3
    5
    思路:若a与m互素,那么a+t*m(t>=1)与m 也互素,否则不互素.设小于m且与m互素的数有n个,分别为a(0),a(1),a(2),...,a(n-1).那么第n+1个为a0+m,第n+2个为a(1)+m...第k个为m*(k-1)+a((k-1)%n);
    #include <cstdio>
    using namespace std;
    const int MAXN=1000005;
    int m,k;
    int relative[MAXN],top;
    int gcd(int a,int b)
    {
        if(b==0)    return a;
        else return gcd(b,a%b);
    }
    void sieve()
    {
        for(int i=1;i<=m;i++)
        {
            if(gcd(i,m)==1)
            {
                relative[top++]=i;
            }
        }
    }
    int main()
    {
        while(scanf("%d%d",&m,&k)!=EOF)
        {
            top=0;
            sieve();
            int n=(k-1)/top;
            int z=(k-1)%top;
            int res=n*m+relative[z];
            printf("%d
    ",res);
        }
        return 0;
    }

    容斥原理+二分.

    容斥原理介绍:http://baike.baidu.com/link?url=H0UEe3zE2jUT7Ree_tycNyXcLYRWH4v25KpCZ3DOcx2HN0jaMYB3rJNF45SFs_EDxWo01C0LCz1rrh-_CG4On_

    n/p表示1~n中是p倍数的数的个数。求1~m中与n互素的数的个数。先将n进行质因数分解,然后通过位运算枚举所有质因数的组合。若选了奇数个质因数ans+=m/质因数之积,否则ans-=m/质因数之积。然后二分枚举m的范围,确定k.

    #include <cstdio>
    #include <vector>
    using namespace std;
    typedef long long LL;
    LL sieve(LL n,LL m)
    {
        vector<LL> divisor;
        for(LL i=2;i*i<=n;i++)
        {
            if(n%i==0)
            {
                divisor.push_back(i);
                while(n%i==0)    n/=i;
            }
        }
        if(n>1)    divisor.push_back(n);
        LL ans=0;
        for(LL mark=1;mark<(1<<divisor.size());mark++)
        {
            LL mul=1;
            LL odd=0;
            for(LL i=0;i<divisor.size();i++)
            {
                if(mark&(1<<i))
                {
                    odd++;
                    mul*=divisor[i];
                }
            }
            LL cnt=m/mul;
            if(odd&1)    ans+=cnt;
            else ans-=cnt;
        }
        return m-ans;
    }
    LL n,k;
    int main()
    {
        while(scanf("%lld%lld",&n,&k)!=EOF)
        {
            LL left=0;
            LL right=1LL<<60;
            while(right-left>1)
            {
                LL mid=(left+right)>>1;
                LL cnt=sieve(n,mid);
                if(cnt>=k)
                {
                    right=mid;
                }
                else
                {
                    left=mid;
                }
            }
            printf("%lld
    ",right);
        }
        return 0;
    }

     Java版:

    import java.util.Scanner;
    import java.util.ArrayList;
    public class Main{ 
        Scanner in = new Scanner(System.in);
        long m, k;
        long sieve(long n, long m)
        {
            ArrayList<Long> divisor = new ArrayList();
            for(long i = 2; i * i <= n; i++)
            {
                if(n % i == 0)
                {
                    divisor.add(i);
                    while(n % i == 0) n /= i;
                }
            }
            if(n > 1) divisor.add(n);
            long ret = 0;
            for(long mark = 1, size = divisor.size(); mark < (1 << size); mark++)
            {
                long odd = 0;
                long mul = 1;
                for(int i = 0; i < size; i++)
                {
                    if((mark & (1L << i)) != 0)
                    {
                        odd++;
                        mul *= divisor.get(i);
                    }
                }
                if(odd % 2 == 1)
                {
                    ret += m / mul;
                }
                else
                {
                    ret -= m / mul;
                }
            }
            return m - ret;
        }
        Main()
        {
            while(in.hasNext())
            {
                m = in.nextLong();
                k = in.nextLong();
                long left = 0, right = 1L << 62;
                while(right > left)
                {
                    long mid = (right + left) >> 1;
                    long s = sieve(m, mid);
                    if(s >= k)
                    {
                        right = mid;
                    }
                    else
                    {
                        left = mid + 1;
                    }
                }
                System.out.println(right);
            }
        }
        public static void main(String[] args){
            
            new Main();
        }
    }
  • 相关阅读:
    JavaScript原型、闭包、继承和原型链等等总结
    JS创建对象的几种方式整理
    js中 给json对象添加属性和json数组添加元素
    JSON 数组
    httpclient封装
    java 数字和日期处理
    jmeter所有版本下载路径
    idea的使用
    Java环境的搭建
    Axure8.0可用的授权码
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5806812.html
Copyright © 2011-2022 走看看