zoukankan      html  css  js  c++  java
  • POJ1745动态规划

    Divisibility
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 11622   Accepted: 4178

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible

    思路:定义bool数组dp[10005][105],dp[i][j]表示前i+1个数所形成的和模上k是否为j.状态转移方程:if(dp[i-1][j]){ dp[i][mod(j+a[i],k)]=true;dp[i][mod(j-a[i],k)]=true;}
    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int MAXN=10005;
    bool dp[MAXN][105];
    int a[MAXN];
    int n,k;
    int mod(int x,int m)
    {
        x%=m;
        if(x<0) x+=m;
        return x;
    }
    int main()
    {
    
        while(scanf("%d%d",&n,&k)!=EOF)
        {
            memset(dp,false,sizeof(dp));
            for(int i=0;i<n;i++)
            {
                scanf("%d",&a[i]);
            }
            dp[0][mod(a[0],k)]=true;
            for(int i=1;i<n;i++)
            {
                for(int j=0;j<k;j++)
                {
                    if(dp[i-1][j])
                    {
                        dp[i][mod(j+a[i],k)]=true;
                        dp[i][mod(j-a[i],k)]=true;
                    }
                }
            }
    
            if(dp[n-1][0])
            {
                printf("Divisible
    ");
            }
            else
            {
                printf("Not divisible
    ");
            }
        }
        return 0;
    }
  • 相关阅读:
    tar 命令详解
    必问的Java集合框架面试题
    计算机网络面试总结
    Java并发面试题
    error: cannot lock ref 'refs/remotes/origin/master': unable to resolve reference 'refs/remotes/origin/master': reference broken...
    String 类型的值能够被反射改变从而引发的意外事件
    dir 命令手册
    JVM可达性分析算法中,哪些可以作为 root ?
    Resnest:注意力+分组卷积的融合
    mmdetection(一)安装及训练、测试VOC格式的数据
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5909780.html
Copyright © 2011-2022 走看看