zoukankan      html  css  js  c++  java
  • OpenCV视屏跟踪

    #include <stdio.h>
    #include <iostream>
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/core/core.hpp"
    #include "opencv2/features2d/features2d.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/calib3d/calib3d.hpp"
    #include "opencv2/nonfree/nonfree.hpp"
    using namespace cv;
    
    int main( int argc, char** argv )
    {
        
        CvCapture* capture = cvCreateFileCapture( "sign3.mp4" );
        Mat img_object = imread( "pic3.jpg", CV_LOAD_IMAGE_GRAYSCALE );
        Mat frame = cvQueryFrame( capture );
    
        Mat img_scene;
        cvtColor(frame, img_scene, CV_BGR2GRAY);
    
        int minHessian = 400;
        SurfFeatureDetector detector( minHessian );
        std::vector<KeyPoint> keypoints_object, keypoints_scene;
        detector.detect( img_object, keypoints_object );
    
        SurfDescriptorExtractor extractor;
        Mat descriptors_object, descriptors_scene;
        extractor.compute( img_object, keypoints_object, descriptors_object );
    
        FlannBasedMatcher matcher;
        std::vector< DMatch > matches;
    
        std::vector<Point2f> obj;
        std::vector<Point2f> scene;
    
        while(1)
        {
            frame = cvQueryFrame( capture );
            cvtColor(frame, img_scene, CV_BGR2GRAY);
            if( !img_object.data || !img_scene.data )
            { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
    
            //-- Step 1: Detect the keypoints using SURF Detector
            
            detector.detect( img_scene, keypoints_scene );
    
            //-- Step 2: Calculate descriptors (feature vectors)
            
            extractor.compute( img_scene, keypoints_scene, descriptors_scene );
    
            //-- Step 3: Matching descriptor vectors using FLANN matcher
            
            matcher.match( descriptors_object, descriptors_scene, matches );
            double max_dist = 0; double min_dist = 100;
    
            //-- Quick calculation of max and min distances between keypoints
            for( int i = 0; i < descriptors_object.rows; i++ )
            { 
                double dist = matches[i].distance;
                if( dist < min_dist ) 
                    min_dist = dist;
                if( dist > max_dist ) 
                    max_dist = dist;
            }
    //        printf("-- Max dist : %f 
    ", max_dist );
    //        printf("-- Min dist : %f 
    ", min_dist );
    
            //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
            std::vector< DMatch > good_matches;
            for( int i = 0; i < descriptors_object.rows; i++ )
            { 
                if( matches[i].distance < 2*min_dist )
                    {
                        good_matches.push_back( matches[i]); 
                    }
            }
            Mat img_matches;
            drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
                good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
    
            //-- Localize the object
            
            for( int i = 0; i < good_matches.size(); i++ )
            {
                //-- Get the keypoints from the good matches
                obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
                scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
            }
            Mat H = findHomography( obj, scene, CV_RANSAC,5.0 );
    
            //-- Get the corners from the image_1 ( the object to be "detected" )
            std::vector<Point2f> obj_corners(4);
            obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
            obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
            std::vector<Point2f> scene_corners(4);
            perspectiveTransform( obj_corners, scene_corners, H);
    
            //-- Draw lines between the corners (the mapped object in the scene - image_2 )
            line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
            line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
            line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
            line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
    
            //-- Show detected matches
            namedWindow( "Good Matches & Object detection", WINDOW_NORMAL );
            imshow( "Good Matches & Object detection", img_matches );
            char c = cvWaitKey(1);
            if( c == 27 ) break;
    
        }
        return 0;
    }
    Copyright © 2015 programnote
  • 相关阅读:
    nodejs 不支持 typescript (...paramName:any[])剩余参数。变相支持方式。
    centos7安装nodejs
    .Net Core Linux centos7行—jenkins linux 构建.net core web app
    asp.net core 编译mvc,routing,security源代码进行本地调试
    发现一个很N且免费的html5拓扑图 关系图 生成组件
    Quill编辑器介绍及扩展
    vs2017 rc 离线安装包制作
    单体架构风格
    GlusterFS 安装 on centos7
    Expect 安装 on centos7
  • 原文地址:https://www.cnblogs.com/programnote/p/4682931.html
Copyright © 2011-2022 走看看