zoukankan      html  css  js  c++  java
  • 关于计数排序、桶排序与基数排序的小结

    把这三个拿到一起来说,是因为这三种排序思想很像。

    计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。
    非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。
    非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。

    (这里再说一下其他排序)

    常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。
    在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。
    比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。

    1.计数排序:

    计数排序需要占用大量空间,它仅适用于数据比较集中的情况。比如 [0~100],[10000~19999] 这样的数据。

    计数排序的基本思想是:对每一个输入的元素arr[i],确定小于 arr[i] 的元素个数
    所以可以直接把 arr[i] 放到它输出数组中的位置上。假设有5个数小于 arr[i],所以 arr[i] 应该放在数组的第6个位置上。

    过程:

    待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
    辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
    输出数组 int[] res = new int[arr.length];

    1.求出待排序数组的最大值max=6, 最小值min=1
    2.实例化辅助计数数组help,help数组中每个下标对应arr中的一个元素,help用来记录每个元素出现的次数
    3.计算 arr 中每个元素在help中的位置 position = arr[i] - min,此时 help = [1,0,2,1,1,1]; (3出现了两次,2未出现)
    4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]

     1 public static int[] countSort1(int[] arr){
     2     if (arr == null || arr.length == 0) {
     3         return null;
     4     }
     5     
     6     int max = Integer.MIN_VALUE;
     7     int min = Integer.MAX_VALUE;
     8     
     9     //找出数组中的最大最小值
    10     for(int i = 0; i < arr.length; i++){
    11         max = Math.max(max, arr[i]);
    12         min = Math.min(min, arr[i]);
    13     }
    14     
    15     int help[] = new int[max];
    16     
    17     //找出每个数字出现的次数
    18     for(int i = 0; i < arr.length; i++){
    19         int mapPos = arr[i] - min;
    20         help[mapPos]++;
    21     }
    22     
    23     int index = 0;
    24     for(int i = 0; i < help.length; i++){
    25         while(help[i]-- > 0){
    26             arr[index++] = i+min;
    27         }
    28     }
    29     
    30     return arr;
    31 }

    另一种实现:

    需要三个数组:
    待排序数组 int[] arr = new int[]{4,3,6,3,5,1};
    辅助计数数组 int[] help = new int[max - min + 1]; //该数组大小为待排序数组中的最大值减最小值+1
    输出数组 int[] res = new int[arr.length];

    1.求出待排序数组的最大值max=6, 最小值min=1
    2.实例化辅助计数数组help,help用来记录每个元素之前出现的元素个数
    3.计算 arr 每个数字应该在排序后数组中应该处于的位置,此时 help = [1,1,3,4,5,6];
    4.根据 help 数组求得排序后的数组,此时 res = [1,3,3,4,5,6]

     1 public static int[] countSort2(int[] arr){
     2     int max = Integer.MIN_VALUE;
     3     int min = Integer.MAX_VALUE;
     4     
     5     //找出数组中的最大最小值
     6     for(int i = 0; i < arr.length; i++){
     7         max = Math.max(max, arr[i]);
     8         min = Math.min(min, arr[i]);
     9     }
    10     
    11     int[] help = new int[max - min + 1];
    12     
    13     //找出每个数字出现的次数
    14     for(int i = 0; i < arr.length; i++){
    15         int mapPos = arr[i] - min;
    16         help[mapPos]++;
    17     }
    18     
    19     //计算每个数字应该在排序后数组中应该处于的位置
    20     for(int i = 1; i < help.length; i++){
    21         help[i] = help[i-1] + help[i];
    22     }
    23     
    24     //根据help数组进行排序
    25     int res[] = new int[arr.length];
    26     for(int i = 0; i < arr.length; i++){
    27         int post = --help[arr[i] - min];
    28         res[post] = arr[i];
    29     }
    30     
    31     return res;
    32 }

    2.桶排序

    桶排序可用于最大最小值相差较大的数据情况,比如[9012,19702,39867,68957,83556,102456]。
    但桶排序要求数据的分布必须均匀,否则可能导致数据都集中到一个桶中。比如[104,150,123,132,20000], 这种数据会导致前4个数都集中到同一个桶中。导致桶排序失效。

    桶排序的基本思想是:把数组 arr 划分为n个大小相同子区间(桶),每个子区间各自排序,最后合并
    计数排序是桶排序的一种特殊情况,可以把计数排序当成每个桶里只有一个元素的情况。

    1.找出待排序数组中的最大值max、最小值min
    2.我们使用 动态数组ArrayList 作为桶,桶里放的元素也用 ArrayList 存储。桶的数量为(max-min)/arr.length+1
    3.遍历数组 arr,计算每个元素 arr[i] 放的桶
    4.每个桶各自排序
    5.遍历桶数组,把排序好的元素放进输出数组

     1 public static void bucketSort(int[] arr){
     2     
     3     int max = Integer.MIN_VALUE;
     4     int min = Integer.MAX_VALUE;
     5     for(int i = 0; i < arr.length; i++){
     6         max = Math.max(max, arr[i]);
     7         min = Math.min(min, arr[i]);
     8     }
     9     
    10     //桶数
    11     int bucketNum = (max - min) / arr.length + 1;
    12     ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketNum);
    13     for(int i = 0; i < bucketNum; i++){
    14         bucketArr.add(new ArrayList<Integer>());
    15     }
    16     
    17     //将每个元素放入桶
    18     for(int i = 0; i < arr.length; i++){
    19         int num = (arr[i] - min) / (arr.length);
    20         bucketArr.get(num).add(arr[i]);
    21     }
    22     
    23     //对每个桶进行排序
    24     for(int i = 0; i < bucketArr.size(); i++){
    25         Collections.sort(bucketArr.get(i));
    26     }
    27     
    28     System.out.println(bucketArr.toString());
    29     
    30 }

    3.基数排序

    基数排序已经不再是一种常规的排序方式,它更多地像一种排序方法的应用,基数排序必须依赖于另外的排序方法。基数排序的总体思路就是将待排序数据拆分成多个关键字进行排序,也就是说,基数排序的实质是多关键字排序。

    如果按照习惯思维,会先比较百位,百位大的数据大,百位相同的再比较十位,十位大的数据大;最后再比较个位。人得习惯思维是最高位优先方式。但一旦这样,当开始比较十位时,程序还需要判断它们的百位是否相同--这就认为地增加了难度,计算机通常会选择最低位优先法。

    基数排序方法对任一子关键字排序时必须借助于另一种排序方法,而且这种排序方法必须是稳定的。对于多关键字拆分出来的子关键字,它们一定位于0-9这个可枚举的范围内,这个范围不大,因此用桶式排序效率非常好。对于多关键字排序来说,程序将待排数据拆分成多个子关键字后,对子关键字排序既可以使用桶式排序,也可以使用任何一种稳定的排序方法。

     1 import java.util.Arrays;
     2 
     3 public class MultiKeyRadixSortTest {
     4 
     5     public static void main(String[] args) {
     6         int[] data = new int[] { 1100, 192, 221, 12, 23 };
     7         print(data);
     8         radixSort(data, 10, 4);
     9         System.out.println("排序后的数组:");
    10         print(data);
    11     }
    12 
    13     public static void radixSort(int[] data, int radix, int d) {
    14         // 缓存数组
    15         int[] tmp = new int[data.length];
    16         // buckets用于记录待排序元素的信息
    17         // buckets数组定义了max-min个桶
    18         int[] buckets = new int[radix];
    19 
    20         for (int i = 0, rate = 1; i < d; i++) {
    21 
    22             // 重置count数组,开始统计下一个关键字
    23             Arrays.fill(buckets, 0);
    24             // 将data中的元素完全复制到tmp数组中
    25             System.arraycopy(data, 0, tmp, 0, data.length);
    26 
    27             // 计算每个待排序数据的子关键字
    28             for (int j = 0; j < data.length; j++) {
    29                 int subKey = (tmp[j] / rate) % radix;
    30                 buckets[subKey]++;
    31             }
    32 
    33             for (int j = 1; j < radix; j++) {
    34                 buckets[j] = buckets[j] + buckets[j - 1];
    35             }
    36 
    37             // 按子关键字对指定的数据进行排序
    38             for (int m = data.length - 1; m >= 0; m--) {
    39                 int subKey = (tmp[m] / rate) % radix;
    40                 data[--buckets[subKey]] = tmp[m];
    41             }
    42             rate *= radix;
    43         }
    44 
    45     }
    46 
    47     public static void print(int[] data) {
    48         for (int i = 0; i < data.length; i++) {
    49             System.out.print(data[i] + "	");
    50         }
    51         System.out.println();
    52     }
    53 
    54 }
  • 相关阅读:
    关于使用easyui dataGrid遇到的小bug问题
    构造带清除按钮的combo
    ajax方式提交数据时“+”的处理
    JavaScript call方法
    stackoverflow上的一个关于传递类对象的问题
    经典回溯算法(八皇后问题)
    c++构造函数(初始化式)被忽略的东西
    跟着<<C++Primer 学set容器>>
    排序算法(内部排序)总结
    hosts文件无法修改的问题解决方案
  • 原文地址:https://www.cnblogs.com/protected/p/6603536.html
Copyright © 2011-2022 走看看