zoukankan      html  css  js  c++  java
  • hdu 1003 Max Sum

    Max Sum

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 180180    Accepted Submission(s): 42082


    Problem Description
    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
     
    Input
    The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
     
    Sample Input
    2
    5 6 -1 5 4 -7
    7 0 6 -1 1 -6 7 -5
     
    Sample Output
    Case 1:
    14 1 4
    Case 2:
    7 1 6
     
    Author
    Ignatius.L
     
    Recommend
    We have carefully selected several similar problems for you:  1087 1069 1058 1024 2571 
     
     

    一道很简单的dp,以前也写过很多次,一直是看着别人的代码写的,可是一直觉得自己对dp的理解不够深刻,每次不能独立的想出代码,于是决定把dp 的题再重新写一遍,加深自己的理解。。。。

    题意:求一串数列中最大序列之和,并输出起始位置和结束位置,尽量保证序列最长(即如第二个例子:第一个数字为0,最大值可加可不加,但是就要从0开始计算起始位置)。

    附上代码:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 int dp[100001],a[100001];  //a[]数组记录每个数字,dp[]数组记录到当前序列的最大序列和
     6 int main()
     7 {
     8     int n,m,i,j,t=1;
     9     scanf("%d",&n);
    10     while(n--)
    11     {
    12         memset(dp,0,sizeof(dp)); //dp 全部初始化为0
    13         scanf("%d",&m);
    14         for(i=1; i<=m; i++)
    15             scanf("%d",&a[i]);
    16         dp[1]=a[1];
    17         for(i=2; i<=m; i++)
    18         {
    19             if(dp[i-1]<0) dp[i]=a[i];   //  若前列的数加起来之和小于0,则忽略前面的值
    20             else dp[i]=dp[i-1]+a[i];
    21         }
    22         int max=dp[1],e=1,f;
    23         for(i=2; i<=m; i++)
    24         {
    25             if(max<dp[i])
    26             {
    27                 max=dp[i];   //找到最大的序列之和
    28                 e=i;          // 记录末尾加到的数字
    29             }
    30         }
    31         int s=0;
    32         for(i=e; i>=1; i--)
    33         {
    34             s+=a[i];
    35             if(s==max)
    36                 f=i;     //找到从哪个数开始的位置
    37         }
    38         printf("Case %d:
    ",t++);
    39         printf("%d %d %d
    ",max,f,e);
    40         if(n)
    41             printf("
    ");
    42     }
    43     return 0;
    44 }
  • 相关阅读:
    本博客停止更新说明
    JavaScript备忘录(3)——正则表达式
    JavaScript备忘录(2)——闭包
    JavaScript备忘录(1)——内置类型
    CSS布局:Float布局过程与老生常谈的三栏布局
    地图投影简明笔记
    Three.js源码阅读笔记-5
    js中 set, map区别
    Package.json详解
    node.js 中的package.json文件怎么创建?
  • 原文地址:https://www.cnblogs.com/pshw/p/4752326.html
Copyright © 2011-2022 走看看