zoukankan      html  css  js  c++  java
  • hdu 2845 Beans

    Beans

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3682    Accepted Submission(s): 1762


    Problem Description
    Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.


    Now, how much qualities can you eat and then get ?
     
    Input
    There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
     
    Output
    For each case, you just output the MAX qualities you can eat and then get.
     
    Sample Input
    4 6
    11 0 7 5 13 9
    78 4 81 6 22 4
    1 40 9 34 16 10
    11 22 0 33 39 6
     
    Sample Output
    242
     
    Source
     
    Recommend
    gaojie   |   We have carefully selected several similar problems for you:  2830 2577 2870 2844 1069 
     

    一道很明显的dp题,隔行隔列相加之和最大,同样的dp列式使用两次。

    题意:取其中一个数,则不能取相邻的两个数,最后取出数字之和为每行的最大子序列之和。

    再在每行的子序列之和中取出几个数字,规则和取行数字相同,不能取相邻的数,最后之和为输出最终结果。

    附上代码:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #define N 200005
     5 using namespace std;
     6 int a[N],b[N],dp[N];
     7 int main()
     8 {
     9     int m,n,i,j;
    10     while(~scanf("%d%d",&n,&m))
    11     {
    12         dp[0]=a[0]=b[0]=0;    //初始化
    13         for(i=1; i<=n; i++)
    14         {
    15             for(j=1; j<=m; j++)
    16                 scanf("%d",&a[j]);
    17             dp[1]=a[1];
    18             for(j=2; j<=m; j++)
    19                 dp[j]=max(dp[j-2]+a[j],dp[j-1]);   //dp思想,取结果大的数据
    20             b[i]=dp[m];     //b数组记录每一行的最大子序列和
    21         }
    22         dp[1]=b[1];
    23         for(i=2; i<=n; i++)
    24             dp[i]=max(dp[i-2]+b[i],dp[i-1]);   //完全一样的思想,只是前面去行的最大值,这里取列的最大值
    25         printf("%d
    ",dp[n]);
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    是什么意思
    Hql查询
    java的LINQ :Linq4j简明介绍
    Sqlite内存数据库
    ACE中的Proactor介绍和应用实例
    mysql的锁表问题
    消息:'null'为空或不是对象
    FusionChart中引入图类型和数据源方法
    实现FusionChart动态获取数据(二)
    JSP页面解决文件路径方法
  • 原文地址:https://www.cnblogs.com/pshw/p/4752360.html
Copyright © 2011-2022 走看看