zoukankan      html  css  js  c++  java
  • hdu 2795 Billboard

    Billboard

    Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 17256    Accepted Submission(s): 7291


    Problem Description
    At the entrance to the university, there is a huge rectangular billboard of size h*w (h is its height and w is its width). The board is the place where all possible announcements are posted: nearest programming competitions, changes in the dining room menu, and other important information.

    On September 1, the billboard was empty. One by one, the announcements started being put on the billboard.

    Each announcement is a stripe of paper of unit height. More specifically, the i-th announcement is a rectangle of size 1 * wi.

    When someone puts a new announcement on the billboard, she would always choose the topmost possible position for the announcement. Among all possible topmost positions she would always choose the leftmost one.

    If there is no valid location for a new announcement, it is not put on the billboard (that's why some programming contests have no participants from this university).

    Given the sizes of the billboard and the announcements, your task is to find the numbers of rows in which the announcements are placed.
     
    Input
    There are multiple cases (no more than 40 cases).

    The first line of the input file contains three integer numbers, h, w, and n (1 <= h,w <= 10^9; 1 <= n <= 200,000) - the dimensions of the billboard and the number of announcements.

    Each of the next n lines contains an integer number wi (1 <= wi <= 10^9) - the width of i-th announcement.
     
    Output
    For each announcement (in the order they are given in the input file) output one number - the number of the row in which this announcement is placed. Rows are numbered from 1 to h, starting with the top row. If an announcement can't be put on the billboard, output "-1" for this announcement.
     
    Sample Input
    3 5 5
    2
    4
    3
    3
    3
     
    Sample Output
    1
    2
    1
    3
    -1
     
    Author
    hhanger@zju
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1698 1542 1828 1540 1255 
     
     
    又一次写线段树的题目,还是看了别人的博客,感觉受益良多。
    首先,叶子节点只有min(n, h)个,不要被10^9吓到;然后把每行的空间存进树,每贴一条广告就删除相应的空间。
     
    题意:一块h*w的广告板上贴广告,每条广告均为1*wi;如果能贴,输出贴的位置(即第几行,位置尽量靠上,靠左);否则输出-1。
     
    附上代码:
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #define M 200010
     5 using namespace std;
     6 struct node
     7 {
     8     int l,r,s;
     9 } ss[M*4];
    10 
    11 int w,h,n;
    12 
    13 int max(int a,int b)
    14 {
    15     return a>b?a:b;
    16 }
    17 void build(int l,int r,int k)
    18 {
    19     ss[k].l=l;
    20     ss[k].r=r;
    21     ss[k].s=w;
    22     if(l==r) return;
    23     int mid=(ss[k].l+ss[k].r)/2;
    24     build(l,mid,2*k);
    25     build(mid+1,r,2*k+1);
    26 }
    27 
    28 int search(int x,int k)
    29 {
    30     if(ss[k].l==ss[k].r)
    31     {
    32         ss[k].s -= x;    //找到一个便减去对应的空间
    33         return ss[k].l;
    34     }
    35     else
    36     {
    37         int sum1=0, sum2=0;
    38         if(x <= ss[k*2].s) sum1 = search(x,k*2);      //如果左子树够用,则进入左子树,否则进入右子树
    39         else if(x <= ss[k*2+1].s) sum2 = search(x,k*2+1);
    40         ss[k].s = max(ss[k*2].s,ss[k*2+1].s);         //根节点保存子树中大的值
    41         return sum1+sum2;
    42     }
    43 }
    44 
    45 int main()
    46 {
    47     int i,j,k;
    48     while(~scanf("%d%d%d",&h,&w,&n))
    49     {
    50         if(h>n) h=n;
    51         build(1,h,1);
    52         for(i=1; i<=n; i++)
    53         {
    54             scanf("%d",&k);
    55             if(k <= ss[1].s) printf("%d
    ",search(k,1));
    56             else printf("-1
    ");
    57         }
    58     }
    59     return 0;
    60 }
  • 相关阅读:
    vscode 多文件编译
    Spring
    tomcat server.xml详细解析
    XML解析——Java中XML的四种解析方式
    MyBatis-config配置信息
    java学习笔记--JDBC实例
    50道经典的JAVA编程题(目录)
    Java8 函数式编程详解
    递归,--遍历多维数组
    eslint关闭配置--vue-webpack
  • 原文地址:https://www.cnblogs.com/pshw/p/5311904.html
Copyright © 2011-2022 走看看