zoukankan      html  css  js  c++  java
  • 双调欧几里得旅行商问题

    CLRS 15-1 双调欧几里得旅行商问题

    欧几里得旅行商问题是对平面上给定的n个点确定一条连接各点的最短闭合旅程的问题。如图(a)给出了一个7个点问题的解。这个问题的一般形式是NP完全的,故其解需要多于多项式的时间。
    J. L. Bentley建议通过只考虑双调旅程来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。下图(b)显示了同样的7个点的最短双调路线。在这种情况下,多项式的算法是可能的。事实上,存在确定的最优双调路线的O(n2)时间的算法。
    描述一个确定最优双调路线的O(n2)时间的算法。可以假设任何两点的x坐标都不相同。(提示:从左到右扫描,保持路线两部分的最优概率)。

           a)最短闭合路线,长度大约是24.89。这个路线不是双调的。                                  b)相同点的集合上的最短双调闭合路线。长度大约是25.58

    解题思路:

    1.题目所求的结果就是最左端点到最右端点的两条线路,对于这两条线路,线路上的点的x坐标是递增的(第i个点一定比i-1个点的x坐标大)

    2.从左端点开始,有两条线路出发,用d(i, k)表示两条线路分别到达i点和k点的距离之后,这里指的是最短距离之和,两条线路无相同点(除去起点和终点)。在这里,由于两条线在意义上是等价的,因而我们规定i<=k,即一条线路总是领先着。

    3.从2可以看出,d(n, n)即为所求。

    对于d(i, k),我们可以如下分析:

    1)当k < i-1时,有

        d(i, k) = d(i-1, k) + |Pi-1Pi|,这里表示d(i, k)必然包含线段|Pi-1Pi| (点Pi-1和点Pi之间的距离)

    2)当k = i-1时,有

        d(i, k) = d(i-1, u) + |PuPi|,其中1 <= u < i-1,这里遍历u的值,寻找最短距离

    3)当k = i时,有

        d(i, k) = d(i-1, u) + |Pi-1Pi| + |PuPi|,其中1 <= u < i-1

    转自 http://www.cnblogs.com/shuaiwhu/archive/2012/05/13/2497355.html

  • 相关阅读:
    June. 26th 2018, Week 26th. Tuesday
    June. 25th 2018, Week 26th. Monday
    June. 24th 2018, Week 26th. Sunday
    June. 23rd 2018, Week 25th. Saturday
    June. 22 2018, Week 25th. Friday
    June. 21 2018, Week 25th. Thursday
    June. 20 2018, Week 25th. Wednesday
    【2018.10.11 C与C++基础】C Preprocessor的功能及缺陷(草稿)
    June.19 2018, Week 25th Tuesday
    June 18. 2018, Week 25th. Monday
  • 原文地址:https://www.cnblogs.com/pshw/p/5482438.html
Copyright © 2011-2022 走看看