zoukankan      html  css  js  c++  java
  • hdu 2604 Queuing

    Queuing

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4387    Accepted Submission(s): 1936


    Problem Description
    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.

      Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.
     
    Input
    Input a length L (0 <= L <= 10 6) and M.
     
    Output
    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
     
    Sample Input
    3 8
    4 7
    4 8
     
    Sample Output
    6
    2
    1
     
    Author
    WhereIsHeroFrom
     
    Source
     
    Recommend
    lcy   |   We have carefully selected several similar problems for you:  1588 2606 2276 2603 3117 
     
    递推后使用矩阵快速幂求解。
    递推的规律:

    1 根据题目的意思,我们可以求出F[0] = 0 , F[1] = 2 , F[2] = 4 , F[3] = 6 , F[4] = 9 , F[5] = 15

     那么我们就可以构造出矩阵

        | 0 1 0 0 |     | F[n-4] |    | F[n-3] |

        | 0 0 1 0 |  *  | F[n-3] | = | F[n-2] |

        | 0 0 0 1 |     | F[n-2] |    | F[n-1] |

        | 1 1 0 1 |     | F[n-1] |    | F[n] |

     从第五个开始。

     
    题意:一个由f和m组成的串,求不存在fff和fmf的串的个数。
     
    附上代码:
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 struct mat
     6 {
     7     int m[5][5];
     8 };
     9 int mod,n;
    10 
    11 mat mul(mat a,mat b)
    12 {
    13     mat c;
    14     int i,j,k;
    15     memset(c.m,0,sizeof(c.m));
    16     for(i=0; i<4; i++)
    17         for(j=0; j<4; j++)
    18         {
    19             for(k=0; k<4; k++)
    20                 c.m[i][j]+=(a.m[i][k]*b.m[k][j])%mod;
    21             c.m[i][j]%=mod;
    22         }
    23     return c;
    24 }
    25 
    26 mat product(mat a,int k)
    27 {
    28     if(k==1) return a;
    29     else if(k&1) return mul(product(a,k-1),a);
    30     else return product(mul(a,a),k/2);
    31 }
    32 
    33 int main()
    34 {
    35     int i,j,k;
    36     mat a,b;
    37     int x[5]= {0,2,4,6,9};
    38     while(~scanf("%d%d",&n,&mod))
    39     {
    40         if(n<5)
    41         {
    42             printf("%d
    ",x[n]%mod);
    43             continue;
    44         }
    45         memset(a.m,0,sizeof(a.m));
    46         a.m[0][1]=1;    ///构建矩阵
    47         a.m[1][2]=1;
    48         a.m[2][3]=1;
    49         a.m[3][0]=1;
    50         a.m[3][1]=1;
    51         a.m[3][3]=1;
    52         b=product(a,n-4);
    53         int ans=0;
    54         for(i=0; i<4; i++)
    55             ans+=(b.m[3][i]*x[i+1])%mod;
    56         printf("%d
    ",ans%mod);
    57     }
    58     return 0;
    59 }
  • 相关阅读:
    weui-switch开关控件,表单提交后如何取值
    [转]判断存储过程、触发器、视图是否存在并删除
    修改服务器的3389端口
    如何在react-native 中优雅的使用 redux
    react native js 与 native 的通信与交互方式
    对 JS virtual DOM 的一知半解
    Python的实例方法,类方法,静态方法之间的区别及调用关系
    redux 管理你的 react 应用
    react- native 入门
    git 指南
  • 原文地址:https://www.cnblogs.com/pshw/p/5546343.html
Copyright © 2011-2022 走看看