zoukankan      html  css  js  c++  java
  • java8 stream编程

    说明:这是基于同事的培训材料做的练习,记录下来,以作日后自己coding分析和改进

    1.准备

    pom.xml

    <dependency>
                <groupId>org.apache.commons</groupId>
                <artifactId>commons-collections4</artifactId>
                <version>4.1</version>
            </dependency>
            <dependency>
                <groupId>com.google.guava</groupId>
                <artifactId>guava</artifactId>
                <version>14.0</version>
            </dependency>

    Dish.java

    package com.example.demo;
    
    import lombok.AllArgsConstructor;
    import lombok.Data;
    
    /**
     * Created by Administrator on 2019/9/7.
     */
    @Data
    @AllArgsConstructor
    public class Dish {
        private int calories;
        private String name;
    
    }
    List<Dish> list;
    list = Lists.newArrayList(
    new Dish( 1,"aa"),
    new Dish(13,"bb"),
    new Dish(7,"cc"),
    new Dish( 6,"aa"),
    new Dish(9,"dd"),
    new Dish(1,"ee"),
    new Dish( 3,"aa"),
    new Dish(1,"ff"),
    new Dish(1,"gg")
    );
     

    2.stream的创建

    Integer[] ints={1,2};
            List<Integer> list2=Lists.newArrayList(ints);
            List<String> collect3 = list2.stream().map(o -> "1" + o).collect(Collectors.toList());
            List<String> collect4 = Stream.of(1,2).map(o -> "1" + o).collect(Collectors.toList());
            List<String> collect5 = Stream.of(ints).map(o -> "1" + o).collect(Collectors.toList());
            List<String> collect6 = Stream.of(list2).map(o -> "1" + o).collect(Collectors.toList());
     System.out.println(collect3);
            System.out.println(collect4);
            System.out.println(collect5);
            System.out.println(collect6);

    输出:

    [11, 12]
    [11, 12]
    [11, 12]
    [1[1, 2]]

    3.list转map并排序

    list排序参照java8排序 java8 list转Map报错Collectors.toMap :: results in "Non-static method cannot be refernced from static context"

    TreeMap<String, String> collect1 = list.stream()
                    .collect(Collectors.toMap(Dish::getName, o -> "", (key1, key2) -> key2, TreeMap<String, String>::new)); //Map中的value自己o->o或者Function.identity()
    System.out.println(collect1);

    输出:{aa=, bb=, cc=, dd=, ee=, ff=, gg=}

    4.list转linkedList

    LinkedList<Dish> collect2 = list.stream().collect(Collectors.toCollection(LinkedList::new));

    输出:[Dish(calories=1, name=aa), Dish(calories=13, name=bb), Dish(calories=7, name=cc), Dish(calories=6, name=aa), Dish(calories=9, name=dd), Dish(calories=1, name=ee), Dish(calories=3, name=aa), Dish(calories=1, name=ff), Dish(calories=1, name=gg)]

    5.filter筛选,map映射,sorted排序,limit截断流,collect的使用

    List<String> collect = list.stream()
                    .filter(d ->d.getCalories() < 9)
                    .sorted(Comparator.comparing(Dish::getCalories).reversed())
                    .map(d->d.getName())
                    .limit(3)

    输出:[cc, aa, aa]

    打印日志:

            List<String> collect = list.stream()
                    .filter(d ->{
                                    System.out.println("filter "+d.getName());
                            return d.getCalories() < 9;})
                    .sorted(Comparator.comparing(Dish::getCalories).reversed())
                    .map(d->{
                        System.out.println("map "+d.getName());
                        return d.getName();
                    })
                    .limit(3)
                    .collect(Collectors.toList());
    System.out.println(collect);
     

    输出:

    filter aa
    filter bb
    filter cc
    filter aa
    filter dd
    filter ee
    filter aa
    filter ff
    filter gg
    map cc
    map aa
    map aa
    [cc, aa, aa]

    //不排序

    Stream在迭代的时候称为内部迭代,会进行一系列的优化,并不会将前面的执行完再进行后面的操作,它会进行全面的评估,执行最优迭代,前面的操作都不会执行,直到最后的collect方法调用时,这称为惰性执行.(你在某些情况下甚至可以使用parallelStream(),它会根据你cpu核数并行计算.)

            List<Dish> list;
            list = Lists.newArrayList(
                    new Dish( 1,"aa"),
                    new Dish(13,"bbc"),
                    new Dish(7,"cc"),
                    new Dish( 6,"aa"),
                    new Dish(9,"dd"),
                    new Dish(1,"ee"),
                    new Dish( 3,"aa"),
                    new Dish(1,"ff"),
                    new Dish(1,"gg")
            );
            List<String> collect = list.stream()
                    .filter(d ->{
                        System.out.println("filter "+d.getName());
                        return d.getCalories() < 9;})
                   // .sorted(Comparator.comparing(Dish::getCalories).reversed())
                    .map(d->{
                        System.out.println("map "+d.getName());
                        return d.getName();
                    })
                    .limit(3)
                    .collect(Collectors.toList());
    
            System.out.println(collect);

    输出:
    filter aa
    map aa
    filter bbc
    filter cc
    map cc
    filter aa
    map aa
    [aa, cc, aa]

     比如:这里filter只进行了4次就找够了,map也只进行了三次,他们是并行进行的

     6.skip,distinct,flatMap的使用

    //distinct

            List<String> collect7 = list.stream().map(Dish::getName).distinct().collect(Collectors.toList());
            System.out.println(collect7);

    输出:[aa, bb, cc, dd, ee, ff, gg]

    //skip

            List<String> collect7 = list.stream().map(Dish::getName).distinct().skip(3).collect(Collectors.toList());
            System.out.println(collect7);

    输出:[dd, ee, ff, gg]

    //Map

    String[] words=new String[]{"hello","world"};
    List<String[]> collect8 = Arrays.stream(words).map(w -> w.split(""))
                    .distinct()
                    .collect(Collectors.toList());
            System.out.println(JSONObject.toJSONString(collect8));

    输出:[["h","e","l","l","o"],["w","o","r","l","d"]]

    //flatmap对流扁平化处理

            List<String> collect8 = Arrays.stream(words).map(w -> w.split(""))
                    .flatMap(Arrays::stream)
                    .distinct()
                    .collect(Collectors.toList());
            System.out.println(JSONObject.toJSONString(collect8));

    输出:["h","e","l","o","w","r","d"]

    7.终结操作:

    7.1 匹配anyMatch,allMatch,oneMatch

    anyMatch,只有找到第一个匹配的就退出并返回true

    if(Stream.of(9,5,8,6,5,9,8,3,1,0,8,2).anyMatch(o->o==8)){
                System.out.println("find the item");
            };

    输出:find the item

    allMatch,匹配所有元素才返回true

    if(Stream.of(9,5,8,6,5,9,8,3,1,0,8,2).allMatch(o->o==8)){
                System.out.println("success");
            }else {
                System.out.println("failure");
            };

    输出:failure

    noneMatch,所有元素都不匹配才返回true,否则false

    if(Stream.of(9,5,8,6,5,9,8,3,1,0,8,2).noneMatch(o->o==11)){
                System.out.println("success");
            }else {
                System.out.println("failure");
            };

    输出:false

    7.2查找findAny,findFirst

    findAny,返回任意一个,注意是否为null的判断,关于Optional参考理解、学习与使用 Java 中的 Optional

            Optional<Integer> any = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).filter(o -> o < 2).findAny();
            if(any.isPresent())
                System.out.println(any.get());

    输出:1

     findFirst,找到第一个符合条件的,如找到第一个平方能被4整除的值

            Optional<Integer> any = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).map(o->o*o).filter(o -> o%4==0).findAny();
            if(any.isPresent())
                System.out.println(any.get());

    输出:64

    相比于findAny,findFirst在并行上有更多的限制,如果不关心找到哪个元素,推荐用findAny。与limit(1)不同,它们是终结操作,不需要collect

    8.归约操作

    8.1求和(广义归约)

    归约操作是指将流中的所有元素反复组合起来,得到一个值。比如,将流中的元素求和:int sum = numbers.stream().reduce(0, (a, b) -> a + b);为什么说是反复组合起来?
    求和归约操作中是将指定的初始值0(reduce方法的第一个参数)与流中的第一个元素相加(表达为reduce的第二个参数BinaryOperator,我们传递是Lambda表达式(a, b) -> a + b)得到一个中间值后与流中的第二个元素相加,直至流中的所有元素都被累加完,得到最终的求和结果。

            Integer reduce = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).reduce(0, (a, b) -> a + b);
            System.out.println(reduce);//64

    只传一个参数

            Optional<Integer> reduce = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).reduce((a, b) -> a + b);
            if(reduce.isPresent())
                System.out.println(reduce.get());//64

    也可以这样

            Optional<Integer> reduce = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).reduce(Integer::sum);
            if(reduce.isPresent())
                System.out.println(reduce.get());//64

    也可以

            Integer collect9 = list.stream().collect(Collectors.reducing(0,//初始值
                    Dish::getCalories, //转换函数
                    Integer::sum));//累积函数
            System.out.println(collect9);//42

    预定义归约:

            Integer collect9 = list.stream().collect(Collectors.summingInt(Dish::getCalories));
            System.out.println(collect9);

     更简洁的用法:

           int sum = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).mapToInt(Integer::intValue).sum();
            System.out.println("sum===="+sum);//sum====42

    8.2求最大值

            Optional<Integer> reduce = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).reduce(Integer::max);
            if(reduce.isPresent())
                System.out.println(reduce.get());//9

    也可以

            Optional<Dish> collect9 = list.stream().collect(Collectors.maxBy(Comparator.comparing(Dish::getCalories)));
            Optional<Dish> collect10 = list.stream().max(Comparator.comparing(Dish::getCalories));
            if(collect9.isPresent())
            System.out.println(collect9.get());//Dish(calories=13, name=bb)

    8.3求最小值

            Optional<Integer> reduce = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).reduce(Integer::min);
            if(reduce.isPresent())
                System.out.println(reduce.get());//0

     8.4其它归约函数count

         Long collect9 = list.stream().collect(Collectors.counting());
            long count = list.stream().count();
            System.out.println(collect9);

    8.5 join连接

            String collect11 = list.stream().map(Dish::getName).collect(Collectors.joining());
            System.out.println(collect11);//aabbccaaddeeaaffgg
            String collect12 = list.stream().map(Dish::getName).collect(Collectors.joining("--", "start:", ":end"));
            System.out.println(collect12);//start:aa--bb--cc--aa--dd--ee--aa--ff--gg:end

     8.6 groupingBy

            Map<String, List<Dish>> collect13 = list.stream().collect(Collectors.groupingBy(Dish::getName));
            System.out.println(JSONObject.toJSONString(collect13));
            System.out.println(JSONObject.toJSONString(list));

    输出:

    {"gg":[{"calories":1,"name":"gg"}],"ff":[{"calories":1,"name":"ff"}],"ee":[{"calories":1,"name":"ee"}],"dd":[{"calories":9,"name":"dd"}],"cc":[{"calories":7,"name":"cc"}],"bb":[{"calories":13,"name":"bb"}],"aa":[{"calories":1,"name":"aa"},{"calories":6,"name":"aa"},{"calories":3,"name":"aa"}]}


    [{"calories":1,"name":"aa"},{"calories":13,"name":"bb"},{"calories":7,"name":"cc"},{"calories":6,"name":"aa"},{"calories":9,"name":"dd"},{"calories":1,"name":"ee"},{"calories":3,"name":"aa"},{"calories":1,"name":"ff"},{"calories":1,"name":"gg"}]

    只要统计个数

            Map<String, Long> collect13 = list.stream().collect(Collectors.groupingBy(Dish::getName, Collectors.counting()));
            System.out.println(JSONObject.toJSONString(collect13));

    输出:{"gg":1,"ff":1,"ee":1,"dd":1,"cc":1,"bb":1,"aa":3}

    9并行执行

            int sum = Stream.of(9, 5, 8, 6, 5, 9, 8, 3, 1, 0, 8, 2).parallel().mapToInt(Integer::intValue).sum();
            System.out.println("sum===="+sum);//42

    数据并行处理,只需要在原来的基础上加一个parallel()就可以开启~。顺便提一下这里parallel()开启的底层并行框架是fork/join,默认的并行数是Ncpu个。

  • 相关阅读:
    springMVC-MyBatis-Mysql 环境下, 返回时间格式不是指定格式
    大话设计模式--第一章 简单工厂设计模式
    java编程思想第四版第十八章总结
    尚学堂-马士兵-专题-正则表达式
    张孝祥java高新技术 --- jkd1.5 新特性 -- 精华总结
    Python—文件进阶操作
    Python—文件读写操作
    Python—异常处理
    Python—网络抓包与解包(pcap、dpkt)
    Python—其它模块
  • 原文地址:https://www.cnblogs.com/pu20065226/p/11483698.html
Copyright © 2011-2022 走看看