zoukankan      html  css  js  c++  java
  • 数学建模算法(四):熵权系数法和层次分析法

    1.熵权系数法matlab

    A=[40    84    4800000    213853928    4017615739    78400000
    100    37    3485750    111573116    4090207204    438154449.3
    70    54    22111578    26203800    4941825082    802000000
    40    38    18574476    16400734    5114949044    490134571.3
    215    114    41814571    39522425    5456405468    1200000000
    90.1    141    14005808    44307038    5538427424    2227000000
    70    160    10128204    9474070    5935741324    2000000000
    160    172    18000000    82797400    6088683554    4819049
    173    125    22049544    127417244    6469129736    3300000000
    59.5    60    8000000    40491051    6700765879    1700000000
    528    246    73084400    1347514000    6853019414    4241035120
    ];
    [n,m]=size(A);
    yj_max=max(A)
    for j=1:m
        for i=1:n
            A2(i,j)=A(i,j)/yj_max(j);
        end
    end
    sum_A2=sum((sum(A2))');
    for j=1:m
        for i=1:n
            d_ij(i,j)=A2(i,j)/sum_A2;
        end
    end
    d_j=sum(d_ij);
    for j=1:m
        for i=1:n
            E_ij(i,j)=-d_ij(i,j)/d_j(j)*log(d_ij(i,j)/d_j(j));
        end
    end
    E_j=sum(E_ij);
    e_j=-1/log(m).*E_j;
    theta_j=(1-e_j)./(sum(1-e_j))
    for i=1:n
        for j=1:m
            w(i,j)=theta_j(j)*A2(i,j);
        end
    end
    w_i=sum(w')%最终得分

     2.层次分析法

    clc;clear all
    A=[1 1/5 1/3
        5 1 3
        3 1/3 1];
    sum3=0;
    [n,n]=size(A);
    sum1=sum(A);
    for j=1:n
        for i=1:n
        A2(i,j)=A(i,j)/sum1(j);
        end
    end
    A2(i,j);
    sum2=sum(A2');
    sum22=sum(sum2);
    W=sum2./sum22;
    W=W'
    AW=A*W;
    for i=1:n
        sum3=sum3+AW(i)/W(i);
    end
    lambda=1/n*sum3;   
    %一致性检验  
    CI=(lambda-n)/(n-1);
    RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];  
    CR=CI/RI(n)
  • 相关阅读:
    常见jvm命令
    服务后台启动
    kafka创建topic,生产和消费指定topic消息
    kafka-manager安装
    修改ssh主机名
    设置虚拟机静态ip
    kafka术语
    cas和oauth2的区别
    会Python的大学生,步入职场将会非常抢手!
    python爬虫把url链接编码成gbk2312格式过程解析
  • 原文地址:https://www.cnblogs.com/pursuit1996/p/5149529.html
Copyright © 2011-2022 走看看