zoukankan      html  css  js  c++  java
  • 几大排序算法思想的总结

    1. 基本思想:
      每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
    2. 排序过程:
    【示例】:
    初始关键字 [49 38 65 97 76 13 27 49]
    第一趟排序后 13 [38 65 97 76 49 27 49]
    第二趟排序后 13 27 [65 97 76 49 38 49]
    第三趟排序后 13 27 38 [97 76 49 65 49]
    第四趟排序后 13 27 38 49 [49 97 65 76]
    第五趟排序后 13 27 38 49 49 [97 97 76]
    第六趟排序后 13 27 38 49 49 76 [76 97]
    第七趟排序后 13 27 38 49 49 76 76 [ 97]
    最后排序结果 13 27 38 49 49 76 76 97
    3.
    void selectionSort(Type* arr,long len)
    {
    long i=0,j=0;/*iterator value*/
    long maxPos;
    assertF(arr!=NULL,"In InsertSort sort,arr is NULL ");
    for(i=len-1;i>=1;i--)
    {
    maxPos=i;
    for(j=0;j<i;j++)
    if(arr[maxPos]<arr[j])maxPos=j;
    if(maxPos!=i)swapArrData(arr,maxPos,i);
    }
    }
    选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换.
    二.直接插入排序
    插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。
    直接插入排序
      直接插入排序(Straight Insertion Sort):将一个记录插入到排好序的有序表中,从而得到一个新的、记录数增1的有序表。
    直接插入排序算法

      哨兵(监视哨)有两个作用:一是作为临变量存放R[i](当前要进行比较的关键字)的副本;二是在查找循环中用来监视下标变量j是否越界。
     
      当文件的初始状态不同时,直接插入排序所耗费的时间是有很大差异的。最好情况是文件初态为正序,此时算法的时间复杂度为O(n),最坏情况是文件初态为反序,相应的时间复杂度为O(n2),算法的平均时间复杂度是O(n2)。算法的辅助空间复杂度是O(1),是一个就地排序。
    直接插入排序是稳定的排序方法。
    三. 冒泡排序
    [算法思想]:将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。

    [算法]:
    void BubbleSort(SeqList R) {
    //R(l..n)是待排序的文件,采用自下向上扫描,对R做冒泡排序
    int i,j;
    Boolean exchange; //交换标志
    for(i=1;i<n;i++){ //最多做n-1趟排序
    exchange=FALSE; //本趟排序开始前,交换标志应为假
    for(j=n-1;j>=i;j--) //对当前无序区R[i..n]自下向上扫描
    if(R[j+1].key<R[j].key){//交换记录
    R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元
    R[j+1]=R[j];
    R[j]=R[0];
    exchange=TRUE; //发生了交换,故将交换标志置为真
    }
    if(!exchange) return;//本趟排序未发生交换,提前终止算法
    } //endfor(外循环)
    } //BubbleSort
    [分析]:起泡排序的结束条件为:最后一趟没有进行“交换”。从起泡排序的过程可见,起泡排序是一个增加有序序列长度的过程,也是一个缩小无序序列长度的过程,每经过一趟起泡,无序序列的长度只缩小1。 [算法思想]:将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。

    [算法]:
    void BubbleSort(SeqList R) {
    //R(l..n)是待排序的文件,采用自下向上扫描,对R做冒泡排序
    int i,j;
    Boolean exchange; //交换标志
    for(i=1;i<n;i++){ //最多做n-1趟排序
    exchange=FALSE; //本趟排序开始前,交换标志应为假
    for(j=n-1;j>=i;j--) //对当前无序区R[i..n]自下向上扫描
    if(R[j+1].key<R[j].key){//交换记录
    R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元
    R[j+1]=R[j];
    R[j]=R[0];
    exchange=TRUE; //发生了交换,故将交换标志置为真
    }
    if(!exchange) return;//本趟排序未发生交换,提前终止算法
    } //endfor(外循环)
    } //BubbleSort
    [分析]:起泡排序的结束条件为:最后一趟没有进行“交换”。从起泡排序的过程可见,起泡排序是一个增加有序序列长度的过程,也是一个缩小无序序列长度的过程,每经过一趟起泡,无序序列的长度只缩小1。
    四. 希尔排序
    基本思想:
      先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为dl的倍数的记录放在同一个组中。先在各组内进行直接插人排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
     该方法实质上是一种分组插入方法。
    给定实例的shell排序的排序过程
     假设待排序文件有10个记录,其关键字分别是:
    49,38,65,97,76,13,27,49,55,04。
     增量序列的取值依次为:
    5,3,1
    Shell排序的算法实现
    1. 不设监视哨的算法描述
    void ShellPass(SeqList R,int d)
    {//希尔排序中的一趟排序,d为当前增量
    for(i=d+1;i<=n;i++) //将R[d+1..n]分别插入各组当前的有序区
    if(R[i].key<R[i-d].key){
    R[0]=R[i];j=i-d; //R[0]只是暂存单元,不是哨兵
    do {//查找R[i]的插入位置
    R[j+d];=R[j]; //后移记录
    j=j-d; //查找前一记录
    }while(j>0&&R[0].key<R[j].key);
    R[j+d]=R[0]; //插入R[i]到正确的位置上
    } //endif
    } //ShellPass
    void ShellSort(SeqList R)
    {
    int increment=n; //增量初值,不妨设n>0
    do {
    increment=increment/3+1; //求下一增量
    ShellPass(R,increment); //一趟增量为increment的Shell插入排序
    }while(increment>1)
    } //ShellSort
    注意:
      当增量d=1时,ShellPass和InsertSort基本一致,只是由于没有哨兵而在内循环中增加了一个循环判定条件"j>0",以防下标越界。
    2.设监视哨的shell排序算法
    算法分析
    1.增量序列的选择
     Shell排序的执行时间依赖于增量序列。
     好的增量序列的共同特征:
      ① 最后一个增量必须为1;
      ② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。
     有人通过大量的实验,给出了目前较好的结果:当n较大时,比较和移动的次数约在nl.25到1.6n1.25之间。
    2.Shell排序的时间性能优于直接插入排序
     希尔排序的时间性能优于直接插入排序的原因:
      ①当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。
      ②当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。
      ③在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
     因此,希尔排序在效率上较直接插人排序有较大的改进。
    3.稳定性
     希尔排序是不稳定的。参见上述实例,该例中两个相同关键字49在排序前后的相对次序发生了变化。
    五. 堆排序
    1、 堆排序定义
     n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
     (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
     若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
    【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
    2、大根堆和小根堆
     根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
     根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
    注意:
     ①堆中任一子树亦是堆。
      ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
    3、堆排序特点
     堆排序(HeapSort)是一树形选择排序。
     堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。
    4、堆排序与直接插入排序的区别
     直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
     堆排序可通过树形结构保存部分比较结果,可减少比较次数。

    5、堆排序
    堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
    (1)用大根堆排序的基本思想
    ① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
    ② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
    ③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
    ……
    直到无序区只有一个元素为止。
    (2)大根堆排序算法的基本操作:
    ① 初始化操作:将R[1..n]构造为初始堆;
    ② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
    注意:
    ①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
    ②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
    (3)堆排序的算法:
    void HeapSort(SeqIAst R)
    { //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
    int i;
    BuildHeap(R); //将R[1-n]建成初始堆
    for(i=n;i>1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。
    R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换
      Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质
    } //endfor
    } //HeapSort
    (4) BuildHeap和Heapify函数的实现
     因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
    ① Heapify函数思想方法
     每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
    "筛选法"调整堆
      R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。因此,有人将此方法称为"筛选法"。
    ②BuildHeap的实现
      要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
      显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。这样,我们只需依次将以序号为 , -1,…,1的结点作为根的子树都调整为堆即可。
      具体算法【参见教材】。
    5、大根堆排序实例
     对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见。
    6、 算法分析
     堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
      堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。
     由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
     堆排序是就地排序,辅助空间为O(1),
     它是不稳定的排序方法。
    六. 快速排序
    快速排序的基本思路是:首先我们选择一个中间值middle(程序中我们可使用数组中间值),把比中间值小的放在其左边,比中间值大的放在其右边。由于这个排序算法较复杂,我们先给出其进行一次排序的程序框架(从各类数据结构教材中可得):
    void QuickSort(int *pData, int left, int right)
    {
     int i, j;
     int middle, iTemp;
     i = left;
     j = right;
     middle = pData[(left + right) / 2]; //求中间值
     do
     {
      while ((pData[i] < middle) && (i < right)) //从左扫描大于中值的数
       i++;
      while ((pData[j] > middle) && (j > left)) //从右扫描小于中值的数
       j--;
      if (i <= j) //找到了一对值
      {
       //交换
       iTemp = pData[i];
       pData[i] = pData[j];
       pData[j] = iTemp;
       i++;
       j--;
      }
     } while (i <= j) ; //如果两边扫描的下标交错,就停止(完成一次)
     //当左边部分有值(left<j),递归左半边
     if(left<j)
      QuickSort (pData,left,j);
      //当右边部分有值(right>i),递归右半边
     if(right>i)
      QuickSort (pData,i,right);
    }
    对于n个成员,快速排序法的比较次数大约为n*logn 次,交换次数大约为(n*logn)/6次。如果n为100,冒泡法需要进行4950 次比较,而快速排序法仅需要200 次,快速排序法的效率的确很高。快速排序法的性能与中间值的选定关系密切,如果每一次选择的中间值都是最大值(或最小值),该算法的速度就会大大下降。快速排序算法最坏情况下的时间复杂度为O(n2),而平均时间复杂度为O(n*logn)。
    七. 合并排序
    說明
    之前所介紹的排序法都是在同一個陣列中的排序,考慮今日有兩筆或兩筆以上的資料,它可能是不同陣列中的資料,或是不同檔案中的資料,如何為它們進行排序?
    解法
    可以使用合併排序法,合併排序法基本是將兩筆已排序的資料合併並進行排序,如果所讀入的資料尚未排序,可以先利用其它的排序方式來處理這兩筆資料,然後再將排序好的這兩筆資料合併。
    有人問道,如果兩筆資料本身就無排序順序,何不將所有的資料讀入,再一次進行排序?排序的精神是儘量利用資料已排序的部份,來加快排序的效率,小筆資料的排序較為快速,如果小筆資料排序完成之後,再合併處理時,因為兩筆資料都有排序了,所有在合併排序時會比單純讀入所有的資料再一次排序來的有效率。
    那麼可不可以直接使用合併排序法本身來處理整個排序的動作?而不動用到其它的排序方式?答案是肯定的,只要將所有的數字不斷的分為兩個等分,直到最後剩一個數字為止,然後再反過來不斷的合併,就如下圖所示:



    不過基本上分割又會花去額外的時間,不如使用其它較好的排序法來排序小筆資料,再使用合併排序來的有效率。
    下面這個程式範例,我們使用快速排序法來處理小筆資料排序,然後再使用合併排序法處理合併的動作。
    例子

    C

    #include <stdio.h>
    #include <stdlib.h>
    #include <time.h>
    #define MAX1 10
    #define MAX2 10
    #define SWAP(x,y) {int t; t = x; x = y; y = t;}
    int partition(int[], int, int);
    void quicksort(int[], int, int);
    void mergesort(int[], int, int[], int, int[]);
    int main(void) {
    int number1[MAX1] = {0};
    int number2[MAX1] = {0};
    int number3[MAX1+MAX2] = {0};
    int i, num;
    srand(time(NULL));
    printf("排序前:");
    printf(" number1[]:");
    for(i = 0; i < MAX1; i++) {
    number1[i] = rand() % 100;
    printf("%d ", number1[i]);
    }
    printf(" number2[]:");
    for(i = 0; i < MAX2; i++) {
    number2[i] = rand() % 100;
    printf("%d ", number2[i]);
    }
    // 先排序兩筆資料
    quicksort(number1, 0, MAX1-1);
    quicksort(number2, 0, MAX2-1);
    printf(" 排序後:");
    printf(" number1[]:");
    for(i = 0; i < MAX1; i++)
    printf("%d ", number1[i]);
    printf(" number2[]:");
    for(i = 0; i < MAX2; i++)
    printf("%d ", number2[i]);
    // 合併排序
    mergesort(number1, MAX1, number2, MAX2, number3);
    printf(" 合併後:");
    for(i = 0; i < MAX1+MAX2; i++)
    printf("%d ", number3[i]);
    printf(" ");
    return 0;
    }
    int partition(int number[], int left, int right) {
    int i, j, s;
    s = number[right];
    i = left - 1;
    for(j = left; j < right; j++) {
    if(number[j] <= s) {
    i++;
    SWAP(number[i], number[j]);
    }
    }
    SWAP(number[i+1], number[right]);
    return i+1;
    }
    void quicksort(int number[], int left, int right) {
    int q;
    if(left < right) {
    q = partition(number, left, right);
    quicksort(number, left, q-1);
    quicksort(number, q+1, right);
    }
    }
    void mergesort(int number1[], int M, int number2[],
    int N, int number3[]) {
    int i = 0, j = 0, k = 0;
    while(i < M && j < N) {
    if(number1[i] <= number2[j])
    number3[k++] = number1[i++];
    else
    number3[k++] = number2[j++];
    }
    while(i < M)
    number3[k++] = number1[i++];
    while(j < N)
    number3[k++] = number2[j++];
    }

    Java

    public class MergeSort {
    public static int[] sort(int[] number1,
    int[] number2) {
    int[] number3 =
    new int[number1.length + number2.length];
    int i = 0, j = 0, k = 0;
    while(i < number1.length && j < number2.length) {
    if(number1[i] <= number2[j])
    number3[k++] = number1[i++];
    else
    number3[k++] = number2[j++];
    }
    while(i < number1.length)
    number3[k++] = number1[i++];
    while(j < number2.length)
    number3[k++] = number2[j++];
    return number3;
    }
    }
    八。基数排序
    基数排序是根据组成关键字的各位值,用"分配"和"收集"的方法进行排序。例如,把扑克牌的排序看成由花色和面值两个数据项组成的主关键字排序。
      花色:梅花<方块<红心<黑桃
      面值:2<3<4<...<10<J<Q<K<A
      若要将一副扑克牌排成下列次序:
      梅花2,...,梅花A,方块2,...,方块A,红心2,...,红心A,黑桃2,...,黑桃A。
      有两种排序方法:
      一、先按花色分成四堆,把各堆收集起来;然后对每堆按面值由小到大排列,再按花色从小到大按堆收叠起来。----称为"最高位优先"(MSD)法。
      二、先按面值由小到大排列成13堆,然后从小到大收集起来;再按花色不同分成四堆,最后顺序收集起来。----称为"最低位优先"(LSD)法。
      [例] 设记录键值序列为{88,71,60,31,87,35,56,18},用基数排序(LSD)。如图所示:其中f[i]、e[i]为按位分配面值为i的队列的队头和队尾指针。

    #define D 3
    typedef struct
    { int key;
    float data;
    int link;
    } JD

    key data link
    int jspx(JD r[],int n)
    { /*链式存储表示的基数排序*/
    int i,j,k,t,p,rd,rg,f[10],e[10];
    /*p为r[]的下标,rd,rg为比例因子,f[j],e[j]是代码为j的队的首尾指针*/
    for(i=1;i<n;i++) r[i].link=i+1;
    r[n].link=0;
    p=1;rd=1;rg=10;
    for(i=1;i<=D;i++)
    { for(j=0;j<10;j++) { f[j]=0;e[j]=0; } /*各队列初始化*/
    do /*按位分配--分到各队列中*/
    { k=(r[p].key%rg)/rd; /*取键值的某一位*/
    if(f[k]==0) f[k]=p;
    else r[e[k]].link=p; /*有重复值--修改链接*/
    e[k]=p;
    p=r[p].link; /*取下一个结点的地址*/
    }while(p>0);
    j=0; /*按位收集--调整分配后的链接*/
    while(f[j]==0) j=j+1;
    p=f[j];t=e[j];
    for(k=j+1;k<10;k++)
    if(f[k]>0){ r[t].link=f[k];t=e[k]; }/*调整链接*/
    r[t].link=0; /*链尾为0*/
    rg=rg*10;rd=rd*10; /*提高一位*/
    }
    return(p); /*返回有序链表的首地址*/
    九 枚举排序
    将每个记录项与其他诸项比较计算出小于该项的记录个数,以确定该项的位置。

    作者:沐雪
    文章均系作者原创或翻译,如有错误不妥之处,欢迎各位批评指正。本文版权归作者和博客园共有,如需转载恳请注明。
    如果您觉得阅读这篇博客让你有所收获,请点击右下方【推荐】
    找一找教程网-随时随地学软件编程 http://www.zyiz.net/

  • 相关阅读:
    CodeForces 510C Fox And Names (拓扑排序)
    Codeforces 1153D Serval and Rooted Tree (简单树形DP)
    HDU 6437 Problem L.Videos (最大费用)【费用流】
    Luogu P3381 (模板题) 最小费用最大流
    Codeforces 741B Arpa's weak amphitheater and Mehrdad's valuable Hoses (并查集+分组背包)
    Codeforces 1144F Graph Without Long Directed Paths (DFS染色+构造)
    HDU 2204 Eddy's 爱好 (容斥原理)
    Codeforces 939E Maximize! (三分 || 尺取)
    Codeforces 938D. Buy a Ticket (最短路+建图)
    CodeForces 959E Mahmoud and Ehab and the xor-MST (MST+找规律)
  • 原文地址:https://www.cnblogs.com/puzi0315/p/14844721.html
Copyright © 2011-2022 走看看