zoukankan      html  css  js  c++  java
  • Codeforces Round #636 (Div. 3)

    题目链接

    http://codeforces.com/contest/1343/problem/E

    tag

    最短路,贪心,思维

    solution

    给定边权集合,给无向图的每条边赋值,使得从a->b->c的最小花费最少
    有两种情况 :

    1. a到b,b到c不经过同一条边两次
    2. a到b,b到c需经过同一条边两次
      两种情况均可以表示成:设x为可达到a,b,c的点,cost可以表示为dis(a,x) + 2 * dis(b,x)+dic(c,x)
      首先置所有的边权为1,bfs算出a,b,c到每个点的最短路,我们至少要走dis(a,x) + dis(b, x) + dis(c,x)条边,另外dis(b,x)条边走了两次,所以贪心的分配边权的话这条边应该分配给最小的dis(b,x)个边权给这条路径,我们可以将边权排序,做一个前缀和,cost=presum[dis(a,x) + dis(b, x) + dis(c,x)] + pre[dis(b, x)],需要保证dis(a,x) + dis(b, x) + dis(c,x) <= m,因为最多只有m条边

    code

    //created by pyoxiao on 2020/07/08
    #include<bits/stdc++.h>
    #define LL long long
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define CL(a, b) memset(a, b, sizeof(a))
    using namespace std;
    const int mod = 1e9 + 7;
    LL fpow(LL a, LL b, LL p = mod){LL ans = 1; a %= p; while(b) {if(b & 1) ans = ans * a % p; b >>= 1; a = a * a % p;} return ans;}
    LL gcd(LL a, LL b){return b == 0 ? a : gcd(b, a % b);}
    const int N = 2e5 + 7;
    int n, m, a, b, c;
    bool v[N];
    LL da[N], db[N], dc[N], p[N], pre[N];
    vector<int> ver[N];
    queue<int> q;
    void solve() {
        scanf("%d %d %d %d %d", &n, &m, &a, &b, &c);
        for(int i = 0; i <= n; i ++) da[i] = db[i] = dc[i] = 1e18, ver[i].clear();
        for(int i = 1; i <= m; i ++) scanf("%lld", &p[i]);
        sort(p + 1, p + m + 1); pre[0] = 0;
        for(int i = 1; i <= m; i ++) pre[i] = pre[i - 1] + p[i];
        for(int i = 1; i <= m; i ++) {
            int u, v;
            scanf("%d %d", &u, &v);
            ver[u].pb(v);
            ver[v].pb(u);
        }
        while(q.size()) q.pop();
        q.push(a); 
        da[a] = 0;
        while(q.size()) {
            int x = q.front(); q.pop();
            for(auto to : ver[x]) {
                if(da[to] == 1e18) {
                    da[to] = da[x] + 1;
                    q.push(to); 
                }
            }
        }
        while(q.size()) q.pop();
        q.push(b); 
        db[b] = 0;
        while(q.size()) {
            int x = q.front(); q.pop();
            for(auto to : ver[x]) {
                if(db[to] == 1e18) {
                    db[to] = db[x] + 1;
                    q.push(to); 
                }
            }
        }
        while(q.size()) q.pop();
        q.push(c); 
        dc[c] = 0;
        while(q.size()) {
            int x = q.front(); q.pop();
            for(auto to : ver[x]) {
                if(dc[to] == 1e18) {
                    dc[to] = dc[x] + 1;
                    q.push(to); 
                }
            }
        }
        LL ans = LONG_LONG_MAX;
        for(int i = 1; i <= n; i ++) {
            if(da[i] + db[i] + dc[i] <= m) {
                //LL cur = ans;
                ans = min(ans, pre[da[i] + db[i] + dc[i]] + pre[db[i]]);
    
                //cout << i << ' ' << ans << '
    ';
            }
        }
        printf("%lld
    ", ans);
    }
    int main() {
        int T = 1;
        scanf("%d", &T);
        while(T --) 
            solve();
        return 0;
    }
    
  • 相关阅读:
    UVA 1025 A Spy in the Metro DP水题
    ZOJ 3814 Sawtooth Puzzle BFS
    ZOJ 3816 Generalized Palindromic Number
    UVA 10859 Placing Lampposts 树形DP
    UVA 11825 Hackers' Crackdown 状压DP
    POJ 2887 Big String 线段树 离线处理
    POJ 1635 Subway tree systems Hash法判断有根树是否同构
    BZOJ 3110 k大数查询 & 树套树
    sdoi 2009 & 状态压缩
    来自于2016.2.24的flag
  • 原文地址:https://www.cnblogs.com/pyoxiao/p/13270100.html
Copyright © 2011-2022 走看看