zoukankan      html  css  js  c++  java
  • Python——通过斐波那契数列来理解生成器

    一、生成器(generator)

    先来看看一个简单的菲波那切数列,出第一个和第二个外,任意一个数都是由前两个数相加得到的。如:0,1,1,2,3,5,8,13......

    输入斐波那契数列前N个数:

     def fab(max): 
        n, a, b = 0, 0, 1 
        while n < max: 
            print b 
            a, b = b, a + b 
            n = n + 1

     结果:

    >>> fib(100)
    1
    1
    2
    3
    5
    8
    13

    但是,要提高 fib 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。每次循环将b的值append到一个list中。

    然而,问题又来了。。。

    该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List来保存中间结果,而是通过 iterable 对象来迭代。

    在python2 中:

    for i in range(1000): pass  

    range会生成一个含有1000个元素的list,极大地浪费了内存空间。

    for i in xrange(1000): pass

    而改进后的xrange则生成一个可迭代(iterable)对象,每次迭代时返回下一个数值,占用空间极少。

    如此,我们可以利用iterable来写一个fib类:

    class Fab(object): 
    
        def __init__(self, max): 
            self.max = max 
            self.n, self.a, self.b = 0, 0, 1 
    
        def __iter__(self): 
            return self 
    
        def next(self): 
            if self.n < self.max: 
                r = self.b 
                self.a, self.b = self.b, self.a + self.b 
                self.n = self.n + 1 
                return r 
            raise StopIteration()

    然后,for循环会在每次循环中自动调用next()方法,不断返回数列的下一个数。占用内存始终为常数。

     >>> for n in Fab(5): 
     ...     print(n)  

    虽然实现了需求,但用class实现的fib并不简洁,由此我们可以引入yield。

     def fab(max): 
        n, a, b = 0, 0, 1 
        while n < max: 
            yield b 
            # print(b) 
            a, b = b, a + b 
            n = n + 1 

    然后:

     >>> for n in fab(5): 
     ...     print(n) 
    

    yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fib(5) 不会执行 fab 函数,而是返回一个 iterable 对象在 for 循环执行时,每次循环都会执行 fib 函数内部的代码,执行到 yield b 时,fib 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

    手动执行过程:

     >>> f = fab(5) 
     >>> f.next() 
     1 
     >>> f.next() 
     1 
     >>> f.next() 
     2 
     >>> f.next() 
     3 
     >>> f.next() 
     5 
     >>> f.next() 
     Traceback (most recent call last): 
      File "<stdin>", line 1, in <module> 
     StopIteration
    

    当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

    一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

  • 相关阅读:
    天梯赛 社交集群(并查集)
    蓝桥杯 正则问题(dfs)
    天梯赛L3-001. 凑零钱(01背包记录物品)
    天梯赛/PAT 二叉树总结
    GPLT天梯赛 L2-022. 重排链表
    蓝桥杯 2的次幂表示(递归)
    排列与组合的一些定理
    卡特兰数
    洛谷P1349 广义斐波那契数列(矩阵快速幂)
    Manacher's Algorithm 马拉车算法(最长回文串)
  • 原文地址:https://www.cnblogs.com/pyramid1001/p/5854712.html
Copyright © 2011-2022 走看看